Skip to main content
Log in

Effect of carbon coating process on the structure and electrochemical performance of LiNi0.5Mn0.5O2 used as cathode in Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi0.5Mn0.5O2 powder was synthesized by a coprecipitation method. LiOH.H2O and coprecipitated [(Ni0.5Mn0.5)C2O4] precursors were mixed carefully together and then calcined at 900°C. Surface modified cathode materials were obtained by coating LiNi0.5Mn0.5O2 with a thin layer of amorphous carbon using table sugar and starch as carbon source. Both parent and carbon-coated samples have the characteristic layered structure of LiNi0.5Mn0.5O2 as estimated from X-ray diffractometry measurements. Transmission electron microscope showed the presence of C layer around the prepared particles. TGA analysis emphasized and confirmed the presence of C coating around LiNi0.5Mn0.5O2. It is obvious that the carbon coating appears to be beneficial for the electrochemical performance of the LiNi0.5Mn0.5O2. A capacity of about 150 mAh/g is delivered in the voltage range 2.5–4.5 V at current density C/15 for carbon coated LiNi0.5Mn0.5O2 in comparison with about 165 mAh/g obtained for carbon free LiNi0.5Mn0.5O2 at the same current density and voltage window. About 92% and 82% capacity retention was obtained at 50th cycle for coated LiNi0.5Mn0.5O2 using sucrose and starch, respectively; whereas, 75% was retained after only 30th cycle for carbon free LiNi0.5Mn0.5O2. This improvement is mainly attributed to the presence of thin layer of carbon layer that encapsulate the nanoparticles and improve the conductivity and the electrochemical performance of LiNi0.5Mn0.5O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohzuku T, Makimura Y (2001) Chem Lett 744

  2. Xia H, Tang SB, Lu L (2008) J Alloy Compd 449:296

    Article  CAS  Google Scholar 

  3. Meng X, Dou S, Wang W-L (2008) J Power Sources 184:489

    Article  CAS  Google Scholar 

  4. Lee K-S, Myung S-T, Moon J-S, Sun Y-K (2008) Electrochim Acta 53:6033

    Article  CAS  Google Scholar 

  5. Ariyoshi K, Ichikawa T, Ohzuku T (2008) J Phys Chem Solids 69:1238

    Article  CAS  Google Scholar 

  6. Abdel-Ghany A, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Electrochim Acta 52:4092

    Article  Google Scholar 

  7. Na S-H, Kim H-S, Moon S-I (2004) Electrochim Acta 50:449

    Article  CAS  Google Scholar 

  8. Grey CP, Yoon W-S, Reed J, Ceder G (2004) Electrochem Solid-State Lett 7(9):A290

    Article  CAS  Google Scholar 

  9. Reed J, Ceder G (2002) Electrochem Solid-State Lett 5(7):A145–A148

    Article  CAS  Google Scholar 

  10. Hewston TA, Chamberland BL (1987) J Phys Chem Solids 48:97

    Article  CAS  Google Scholar 

  11. Cushing BL, Goodenough JB (2002) Solid State Sci 4:1487

    Article  CAS  Google Scholar 

  12. Karan NK, Balasubramanianb M, Abraham DP, Furczon MM, Pradhan DK, Saavedra-Arias JJ, Thomas R, Katiyar RS (2009) J Power Sources 187:586

    Article  CAS  Google Scholar 

  13. Zhang B, Chen G, Xu P, Li CC (2008) J Power Sources 176:325

    Article  CAS  Google Scholar 

  14. Abdel-Ghany A, Zaghib K, Mauger A, Gendron F, Eid AE, Abbas H, Hashem AM, Ramana CV, Julien CM (2007) Electrochemical Society Transaction 3(27):131

    CAS  Google Scholar 

  15. Stoyanova R, Zhecheva E, Vassilev S (2006) J Solid State Chem 179:378

    Article  CAS  Google Scholar 

  16. Kim G-T, Kim J-U, Sim Y-J, Kim K-W (2006) J Power Sources 158:1414

    Article  CAS  Google Scholar 

  17. Tang A, Huang K (2005) Mater Chem Phys 93:6

    Article  CAS  Google Scholar 

  18. Myung S-T, Komaba S, Hirosaki N, Hosoya K, Kumagai N (2005) J Power Sources 146:645

    Article  CAS  Google Scholar 

  19. Li D, Muta T, Noguchi H (2004) J Power Sources 135:262

    Article  CAS  Google Scholar 

  20. Dong YZ, Zhao YM, Chen YH, He ZF, Kuang Q (2009) Materials Chemistry and Physics, in press

  21. Kim J-K, Cheruvally G, Ahn J-H, Hwang G-C, Choi J-B (2008) J Phys Chem Solids 69:2371

    Article  CAS  Google Scholar 

  22. Lu ZH, Beaulileu LY, Donaberger RA, Thomas CL (2002) J Electrochem Soc 149:A778

    Article  CAS  Google Scholar 

  23. Kang S-H, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) J Power Sources 112:41

    Article  CAS  Google Scholar 

  24. Ohzuku T, Makimura Y (2001) Chem Lett 30:744

    Article  Google Scholar 

  25. Lu ZH, MacNeil DD, Dahn JR (2001) Electrochem Solid-State Lett 4:A191

    Article  CAS  Google Scholar 

  26. Lu ZH, Beaulileu LY, Donaberger RA, Thomas CL, Dahn JR (2002) J Electrochem Soc 149:A778

    Article  CAS  Google Scholar 

  27. Xia H, Tang SB, Lua L (2008) J Alloy Compd 449:296

    Article  CAS  Google Scholar 

  28. Ma S-B, Namb K-W, Yoonb W-S, Yang X-Q, Ahnc K-Y, Ohd K-H, Kim K-B (2008) J Power Sources 178:483

    Article  CAS  Google Scholar 

  29. Lee JB, Lee J-M, Yoon S, Kim S-O, Sohn J-S, Rhee K-I, Sohn H-J (2008) J Power Sources 183:325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Hashem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, A.M., Abdel Ghany, A.E., Nikolowski, K. et al. Effect of carbon coating process on the structure and electrochemical performance of LiNi0.5Mn0.5O2 used as cathode in Li-ion batteries. Ionics 16, 305–310 (2010). https://doi.org/10.1007/s11581-009-0403-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0403-8

Keywords

Navigation