Skip to main content

Advertisement

Log in

The computer-aided parallel external fixator for complex lower limb deformity correction

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Since parameters of the parallel external fixator are difficult to measure and calculate in real applications, this study developed computer software that can help the doctor measure parameters using digital technology and generate an electronic prescription for deformity correction.

Methods

According to Paley’s deformity measurement method, we provided digital measurement techniques. In addition, we proposed an deformity correction algorithm to calculate the elongations of the six struts and developed a electronic prescription software. At the same time, a three-dimensional simulation of the parallel external fixator and deformed fragment was made using virtual reality modeling language technology. From 2013 to 2015, fifteen patients with complex lower limb deformity were treated with parallel external fixators and the self-developed computer software. All of the cases had unilateral limb deformity. The deformities were caused by old osteomyelitis in nine cases and traumatic sequelae in six cases. A doctor measured the related angulation, displacement and rotation on postoperative radiographs using the digital measurement techniques. Measurement data were input into the electronic prescription software to calculate the daily adjustment elongations of the struts. Daily strut adjustments were conducted according to the data calculated. The frame was removed when expected results were achieved. Patients lived independently during the adjustment.

Results

The mean follow-up was 15 months (range 10–22 months). The duration of frame fixation from the time of application to the time of removal averaged 8.4 months (range 2.5–13.1 months). All patients were satisfied with the corrected limb alignment. No cases of wound infections or complications occurred.

Conclusions

Using the computer-aided parallel external fixator for the correction of lower limb deformities can achieve satisfactory outcomes. The correction process can be simplified and is precise and digitized, which will greatly improve the treatment in a clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barbary HE, Ghani HA, Misbah H, Salem K (2005) Complex tibial plateau fractures treated with Ilizarov external fixator with or without minimal internal fixation. Int Orthop 29(3):182. doi:10.1007/s00264-005-0638-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coogan PG, Fox JA, Fitch RD (1996) Treatment of adolescent Blount disease with circular external fixation device and distraction osteogenesis. J Pediatr Orthop 16(4):450–454. doi:10.1097/01241398-199607000-00006

    Article  CAS  PubMed  Google Scholar 

  3. Stanitski DF, Dahl M, Louie K, Grayhack J (1997) Management of late-onset tibia vara in the obese patient by using circular external fixation. J Pediatr Orthop 17(5):691–694. doi:10.1097/00004694-199709000-00021

    Article  CAS  PubMed  Google Scholar 

  4. Monticelli G, Spinelli R (1981) Limb lengthening by epiphyseal distraction. Int Orthop 5(2):85–90. doi:10.1007/BF00267837

    Article  CAS  PubMed  Google Scholar 

  5. Bianchi Maiocchi A (1997) Historical review of the method according to Ilizarov. 15 years after its worldwide application. Bull Hosp Jt Dis 56(1):16–18 PMID: 9063597

    CAS  PubMed  Google Scholar 

  6. Gubin AV, Borzunov DY, Malkova TA (2013) The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. Int Orthop 37(8):1533–1539. doi:10.1007/s00264-013-1935-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shtarker H, Volpin G, Stolero J, Kaushansky A, Samchukov M (2002) Correction of combined angular and rotational deformities by the Ilizarov method. Clin Orthop Relat Res 402(402):184–195 PMID:12218483

    Article  Google Scholar 

  8. Feldman DS, Madan SS, Koval KJ, van Bosse HJ, Bazzi J, Lehman WB (2003) Correction of tibia vara with six-axis deformity analysis and the Taylor Spatial Frame. J Pediatr Orthop 23(3):387–391. doi:10.1097/00004694-200305000-00022

    PubMed  Google Scholar 

  9. Dahl M, Gulli B, Berg T (1994) Complications of limb lengthening. A learning curve. Clin Orthop 301(301):10–18 PMID: 8156659

    Google Scholar 

  10. Lesiak AC, Vosseller JT, Rozbruch SR (2012) Osteotomy, arthrodesis, and arthroplasty for complex multiapical deformity of the leg. HSS J 8(3):304–308. doi:10.1007/s11420-011-9232-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manner HM, Huebl M, Radler C, Ganger R, Petje G, Grill F (2007) Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor Spatial Frame with the Ilizarov ring fixator. J Child Orthop 1(1):55–61. doi:10.1007/s11832-006-0005-1

    Article  PubMed  Google Scholar 

  12. Paley D (2003) Principles of deformity correction. Springer, Berlin

    Google Scholar 

  13. Ganger R, Radler C, Speigner B, Grill F (2010) Correction of post-traumatic lower limb deformities using the Taylor Spatial Frame. Int Orthop 34(5):723–730. doi:10.1007/s00264-009-0839-5

    Article  PubMed  Google Scholar 

  14. Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M (2011) Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5(5):343–349. doi:10.1007/s11832-011-0361-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paley D, Tetsworth K (1992) Mechanical axis deviation of the lower limbs.Preoperative planning of muhiapical frontal plane angular and bowing deformities of the femur and tibia Clin. Orthop Relat Res 280:65–71 PMID: 1611765

  16. Seide K, Faschingbauer M, Wenzl ME, Weinrich N, Juergens C (2004) A hexapod robot external fixator for computer assisted fracture reduction and deformity correction. Int J Med Robot 1(1):64–9. doi:10.1002/rcs.6

    Article  CAS  PubMed  Google Scholar 

  17. Rogers MJ, McFadyen I, Livingstone JA, Monsell F, Jackson M, Atkins RM (2007) Computer hexapod assisted orthopaedic surgery (CHAOS) in the correction of long bone fracture and deformity. J Orthop Trauma 21(5):337–342. doi:10.1097/BOT.0b013e3180463103

    Article  PubMed  Google Scholar 

  18. Fichter EF (1986) A stewart-platform based manipulator: general theory and practical construction. Int J Robot Res 5(2):157–182. doi:10.1177/027836498600500216

    Article  Google Scholar 

  19. Dasgupta B, Mruthyunjaya TS (1998) A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech Mach Theory 33(8):1135–1152. doi:10.1016/S0094-114X(97)00118-3

    Article  Google Scholar 

  20. Paley D, Herzenberg JE, Tetsworth K, Mckie J, Bhave A (1994) Degormity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin N Am 25(3):425–465. doi:10.1097/PEP.0b013e3181cd1868

    CAS  Google Scholar 

  21. Küchenmeister J (2014) Three-dimensional adaptive coordinate transformations for the Fourier modal method. Opt Express 22(2):1342–9. doi:10.1364/OE.22.001342

    Article  PubMed  Google Scholar 

  22. Nanua P, Waldron KJ, Murthy V (1990) Direct kinematic solution of a Stewart platform. IEEE Trans Rob Autom 6(4):438–444. doi:10.1109/70.59354

    Article  Google Scholar 

  23. Dasgupta B, Mruthyunjaya TS (2000) Erratum to “A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulato”[Mechanism and Machine Theory 33 (8) 1135-1152].Mech Mach Theory 35(4):V-V. doi:10.1016/s0094-114x(99)00065-8

  24. Brinker MR, O’Connor DP (2007) Outcomes of tibial nonunion in older adults following treatment using the Ilizarov method. J Orthop Trauma 21(9):634. doi:10.1097/BOT.0b013e318156c2a2

    Article  PubMed  Google Scholar 

  25. Gunes T, Erdem M, Bostan B, Yeniel K, Sen C (2008) Quality of life in patients with varus gonarthrosis treated with high tibial osteotomy using the circular external fixator. Knee Surg Sport Traumatol Arthosc 16(3):311–316. doi:10.1007/s00167-007-0473-y

    Article  Google Scholar 

  26. Rodl R, Leidinger B, Bohm A, Winkelmann W (2003) Correction of deformities with conventional and hexapod frames—comparison of methods. Z Orthop Ihre Grenzgeb 141(1):92–8 PMID: 12605337

    Article  CAS  PubMed  Google Scholar 

  27. Schiedel F, Vogt B, Wacker S, Pöpping J, Bosch K, Rödl R, Rosenbaum D (2012) Walking ability of children with a hexapod external ring fixator (TSF®) and foot plate mounting at the lower leg. Gait Posture 36(3):500–5. doi:10.1016/j.gaitpost.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Blondel B, Launay F, Glard Y, Jacopin S, Jouve JL, Bollini G (2010) Hexapodal external fixation in the management of children tibial fractures. J Pediatr Orthop B 19:487–491. doi:10.1097/BPB.0b013e32833dec5d

    Article  PubMed  Google Scholar 

  29. Takata M, Vilensky VA, Tsuchiya H, Solomin LN (2013) Foot deformity correction with hexapod external fixator, the ortho-SUV frame\(^{{\rm {TM}}}\). J Foot Ankle Surg 52(3):324–30. doi:10.1053/j.jfas.2013.01.013

    Article  PubMed  Google Scholar 

  30. Raskolnikov D, Slover JD, Egol KA (2013) The use of a multiplanar, multi-axis external fixator to achieve knee arthrodesis in a worst case scenario: a case series. Iowa Orthop J 33:19–24 PMID:24027456

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research work was supported by Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period of China under Grant No. 2012BAI33B06 and Hebei Province Innovation Funding Project for Graduate Student of China under Grant No. 220056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Chen, J., Guo, Y. et al. The computer-aided parallel external fixator for complex lower limb deformity correction. Int J CARS 12, 2107–2117 (2017). https://doi.org/10.1007/s11548-017-1654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1654-x

Keywords

Navigation