Skip to main content
Log in

Patient-specific ultrasound liver phantom: materials and fabrication method

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

An anatomically realistic ultrasound liver phantom with tissue-specific distinct signal properties is needed for training of novices in diagnostic and interventional procedures. The main objective of this work was development and testing of a new durable liver ultrasound training phantom for use with a hybrid simulator.

Methods

A liver ultrasound phantom was fabricated in four main phases: materials selection, segmentation of CT images and realization of 3D models, vessel and lesion realization, and final assembly with silicone casting. Silicone was used as basic material due to its durability and stability over time. Several additives were analyzed and mixed with the polymer to reproduce the echogenicity of three simulated soft tissue types: parenchyma, lesions, and veins.

Results

Cysts and vessel trees appear anechoic in the B mode ultrasound images when realized with pure silicone. The liver parenchyma, hypoechoic, and hyperechoic lesions were realized with different concentrations of graphite and Vaseline oil to increase their relative echogenicity. These materials were successful for creation of an ultrasound liver phantom containing simulated blood vessels and lesions.

Conclusion

The phantom reproduces the human liver morphology and provides vessels and lesions ultrasound images with recognizable differences in echogenicity. The speed of sound in the simulated materials is inaccurate, but the problem can be overcome via software adjustment in a hybrid simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kunkler K (2006) The role of medical simulation: an overview. Int J Med Robot 2:203–210

    Article  PubMed  Google Scholar 

  2. Condino S, Carbone M, Ferrari V, Faggioni L, Peri A, Ferrari M et al (2010) How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int J Med Robot Comp 7:202–213

    Article  Google Scholar 

  3. Freschi C, Parrini S, Dinelli N, Ferrari M, Ferrari V (2014) Hybrid simulation using mixed reality for interventional ultrasound imaging training. Int J CARS. doi:10.1007/s11548-014-1113-x

  4. Hunt A, Ristolainen A, Ross P, Opik R, Krumme A, Kruusmaa M (2013) Low cost anatomically realistic renal biopsy phantoms for interventional radiology trainees. Europ J Radiol 82:594–600

    Article  Google Scholar 

  5. Sultan SF, Shorten G, Iohom G (2013) Simulators for training in ultrasound guided procedures. Med Ultrasonogr 15:125–131

    Article  Google Scholar 

  6. Shevchenko N, Schwaiger J, Markert M., Flatz W, Lueth TC (2011) Evaluation of a resectable ultrasound liver phantom for testing of surgical navigation systems. In: Proceedings of the 2011, IEEE Eng Med Biol Soc, pp 916–919

  7. D’Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR (2011) Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys 28:688–700

    Article  Google Scholar 

  8. Madsen EL, Zagzebski JA, Banjavie RA, Jutila RE (1978) Tissue mimicking materials for ultrasound phantoms. Med Phys 5:391–394

    Article  CAS  PubMed  Google Scholar 

  9. Carbone M, Condino S, Mattei L, Forte P, Ferrari V, Mosca F (2012) Anthropomorphic ultrasound elastography phantoms-characterization of silicone materials to build breast elastography phantoms. In: IEEE Eng Med Biol Soc (ed IEEE)

  10. Casciaro S, Conversano F, Musio S, Casciaro E, Demitri C, Sannino A (2009) Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. J Mat Sci Mater Med 20:983–989

    Article  CAS  Google Scholar 

  11. Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR (2005) Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys Med Biol 50:5597–5618

    Article  PubMed Central  PubMed  Google Scholar 

  12. Culjat MO, Goldenberg D, Tewari P, Singh RS (2010) A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol 36:861–873

    Article  PubMed  Google Scholar 

  13. Hungr N, Long JA, Beix V, Troccaz JA (2012) Realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures. Med Phys 39:2031–2041

  14. Chiarelli P, Lanat A, Carbone M (2010) High frequency poroelastic waves in hydrogels. J Acoust Soc Am 127:1197

    Article  CAS  PubMed  Google Scholar 

  15. Zell K, Sperl JI, Vogel MW, Niessner R, Haisch C (2007) Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys Med Biol 52:N475–484

    Article  CAS  PubMed  Google Scholar 

  16. Maggi LE, von Kruger MA, Pereira WCA, Monteiro E (2009) Development of silicon-based materials for ultrasound biological phantoms. In: ULTSYM, pp 1962–1965

  17. Anderson PG, Rouze NC, Palmeri ML (2011) Effect of graphite concentration on shear-wave speed in gelatin-based tissue-mimicking phantoms. Ultrasound Imaging 33:134–142

    Article  Google Scholar 

  18. Yeh WC, Li PC, Jeng YM, Hsu HC, Kuo PL, Li ML et al (2002) Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol 28:467–474

    Article  PubMed  Google Scholar 

  19. Madsen EL, Zagzebski JA, Frank GR (1982) Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol 8:277–287

    Article  CAS  PubMed  Google Scholar 

  20. http://www.smooth-on.com/

  21. Gerstenmaier JF, McCarthy CJ, Brophy DP, Cantwell CP (2013) Evaluation of the particulate concentration in a gelatin-based phantom for sonographically guided lesion biopsy. J Ultrasound Med 32:1471–1475

    Article  PubMed  Google Scholar 

  22. Nava A, Mazza E, Furrer M et al (2008) In vivo mechanical characterization of human liver. Med Image Anal 12(2):203–216

    Article  CAS  PubMed  Google Scholar 

  23. Willaert WI, Aggarwal R, Van Herzeele I, Cheshire NJ, Vermassen FE (2012) Recent advancements in medical simulation: patient-specific virtual reality simulation. World J Surg 36:1703–1712

    Article  PubMed  Google Scholar 

  24. Ferrari V, Carbone M, Cappelli C, Boni L, Melfi F, Ferrari M et al (2012) Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surg Endosc 26:616–626

    Article  PubMed Central  PubMed  Google Scholar 

  25. Branca PF, Fabiano B, D’Orazio A, Marinozzi F, Rubergni S (2008) Fondamenti di bioingegneria clinica, vol 2. Ecotomografia, Springer

Download references

Acknowledgments

The authors would like to thank Pietro Miloro for the precious contribution in the speed of sound measurements. This work has been financed by Arpa Foundation and by Opera (Advanced OPERAting room) Project (Tuscany Regional Funds: PAR FAS 2007–2013 Azione 1.1 P.I.R. 1.1.B.).

Conflict of interest

Alessia Pacioni, Marina Carbone, Cinzia Freschi, Rosanna Viglialoro, Vincenzo Ferrari, Mauro Ferrari declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Pacioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacioni, A., Carbone, M., Freschi, C. et al. Patient-specific ultrasound liver phantom: materials and fabrication method. Int J CARS 10, 1065–1075 (2015). https://doi.org/10.1007/s11548-014-1120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1120-y

Keywords

Navigation