Skip to main content

Advertisement

Log in

Endocardial boundary extraction in left ventricular echocardiographic images using fast and adaptive B-spline snake algorithm

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A fast and robust algorithm was developed for automatic segmentation of the left ventricular endocardial boundary in echocardiographic images. The method was applied to calculate left ventricular volume and ejection fraction estimation.

Methods

A fast adaptive B-spline snake algorithm that resolves the computational concerns of conventional active contours and avoids computationally expensive optimizations was developed. A combination of external forces, adaptive node insertion, and multiresolution strategy was incorporated in the proposed algorithm. Boundary extraction with area and volume estimation in left ventricular echocardiographic images was implemented using the B-spline snake algorithm. The method was implemented in MATLAB and 50 medical images were used to evaluate the algorithm performance. Experimental validation was done using a database of echocardiographic images that had been manually evaluated by experts.

Results

Comparison of methods demonstrates significant improvement over conventional algorithms using the adaptive B-spline technique. Moreover, our method reached a reasonable agreement with the results obtained manually by experts. The accuracy of boundary detection was calculated with Dice’s coefficient equation (91.13%), and the average computational time was 1.24 s in a PC implementation.

Conclusion

In sum, the proposed method achieves satisfactory results with low computational complexity. This algorithm provides a robust and feasible technique for echocardiographic image segmentation. Suggestions for future improvements of the method are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen C, Lu H, Huang Y (2002) Cell-based dual snake model: a new approach to extracting highly winding boundaries in the ultrasound images. Ultrasound in Med Biol 28: 1061–1073

    Article  Google Scholar 

  2. Mignotte M, Meunier J, Tardif JC (2001) Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and Markov random fields. Pattern Anal Appl 4(4): 256–271

    Article  Google Scholar 

  3. Edwards GJ, Taylor CJ, Cootes TF (1998) Interpreting face images using active appearance models. In Proc Int’l Conf Automatic Face Gesture Recog, pp 300–305

  4. Cheng J, Foo SW, Krishnan SM (2006) Watershed presegmented snake for boundary detection and tracking of LV in echocardiographic images. IEEE Trans Info Technol Biomed 10(2): 414–416

    Article  Google Scholar 

  5. Chuang G, Kuo C (1996) Wavelet descriptor of planar curves: theory and applications. IEEE Trans Image Process 5: 56–70

    Article  CAS  PubMed  Google Scholar 

  6. Park J, Keller JM (2001) snakes on the watershed. IEEE Trans Pattern Anal Mach Intell 23(10): 1201–1205

    Article  Google Scholar 

  7. Jacob M, Blu T, Unser M (2004) Efficient energies and algorithms for parametric snakes. IEEE Trans Image Process 13: 1231–1244

    Article  PubMed  Google Scholar 

  8. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25

  9. Jacob G, Alison Noble J, Mulet-Parada M, Blake A (1999) Evaluating a robust contour tracker on echocardiographic sequences. Med Image Anal 3(1): 63–75

    Article  CAS  PubMed  Google Scholar 

  10. Malassiotis S, Strintzis MG (1999) Tracking the left ventricle in echocardiographic images by learning heart dynamics. IEEE Trans Med Imaging 18(3): 282–290

    Article  CAS  PubMed  Google Scholar 

  11. Mikic I, Krucinski S, Thomas JD (1998) Segmentation and tracking in echocardiographic sequences: Active contours guided by optical flow estimates. IEEE Trans Med Imaging 17(2): 274–284

    Article  CAS  PubMed  Google Scholar 

  12. Chalana V, Linker DT, Haynor DR, Kim Y (1996) A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans Med Imaging 15: 290–298

    Article  CAS  PubMed  Google Scholar 

  13. Angelini ED, Laine AF, Takuma S, Holmes JW, Homma S (2001) LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Trans Med Imaging 20(6): 457–469

    Article  CAS  PubMed  Google Scholar 

  14. Comaniciu D, Zhou XS, Krishnan S (2004) Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Trans Med Imaging 23: 849–860

    Article  PubMed  Google Scholar 

  15. Kass M, Witkin A, Terzopoulos D (1988) snakes: active contour models. Int J Comput Vis 1(4): 321–331

    Article  Google Scholar 

  16. Mishra A, Dutta PK, Ghosh MK (2003) A GA based approach for boundary detection of left ventricle with echocardiographic image sequences. Image Vis Comput 21: 967–976

    Article  Google Scholar 

  17. Mignotte M, Meunier J (2001) A multiscale optimization approach for the dynamic contour-based boundary detection issue. Comput Med Imaging Graph 25(3): 265–275

    Article  CAS  PubMed  Google Scholar 

  18. Mignotte M, Meunier J, Tardif J-C (2001) Endocardial boundary estimation and tracking in echocardiographic images using deformable template and markov random fields. Pattern Anal Appl 4(4): 256–271

    Article  Google Scholar 

  19. Brigger P, Engel R, Unser M (1988) B-Spline snakes and a JAVA interface: an Intuitive tool for general contour outlining. ICIP 2: 277–281

    Google Scholar 

  20. Brigger P, Hoeg J, Unser M (2000) B-spline snakes: a flexible tool for parametric contour detection. IEEE Trans Image Process 9(9): 1484–1496

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Teoh EK, Shen D (2001) Structure-adaptive B-snake for segmenting complex objects. In: Proceedings 2001 International Conference on image processing, vol 2, Issue, 7–10 Oct 2001, pp 769–772

  22. Menet S, Saint-Marc P, Medioni G (1990) B-snakes: Implementation and application to stereo. In: Image Understanding Workshop. Sept., pp 720–726

  23. Xu C, Prince JL (1998) Generalized gradient vector flow external forces for active contours. Signal Process Int J 71(2): 131–139

    Article  Google Scholar 

  24. Wang M, Evans J, Hassebrook L, Knapp C (1996) A multistage, optimal active contour model. IEEE Trans Image Process 5: 1586–1591

    Article  CAS  PubMed  Google Scholar 

  25. Hill A, Taylor CJ (1997) Automatic landmark identification using a new method of non-rigid correspondence. In: Proc. Information Processing in Medical Imaging (IPMI’97). Springer, Berlin, pp 483–488

  26. Flickner M, Sawhney H, Pryor D, Lotspiech J (1994) Intelligent interactive image outlining using spline snakes. In: 28th Asilomar Conf signals, systems, computers 1:731–735

  27. Wang Y, Teoch EK (2006) Object contour extraction using adaptive B-snake model. J Math Imaging Vis 24(3): 295–306

    Article  Google Scholar 

  28. Marsousi M, Eftekhari A, Alirezaie J (2008) Object contour extraction in medical images by fast adaptive B-Snake. 30th Annual Int Conf of the IEEE Eng in medicine and biology society, pp 3068–3071

  29. Rosenfeld A (1984) Multiresolution image processing. Springer, New York

    Google Scholar 

  30. Liao CW, Medioni G (1995) Surface approximation of a cloud of 3D points. Graph Model Image Process 57(1): 67–74

    Article  Google Scholar 

  31. Wei M, Zhou Y, Wan M (2004) A fast snake model based on non-linear diffusion for medical image segmentation. Comput Med Imaging Graph 28: 109–117

    Article  PubMed  Google Scholar 

  32. Wang Y, Teoh EK (2005) Dynamic B-snake model for complex objects segmentation. Image Vis Comput 23: 1029–1040

    Article  Google Scholar 

  33. Leung CC, Chan CH, Chan FHY, Tsui WK (2004) B-spline snakes in two stages Pattern Recognition, 2004. ICPR 2004. In: Proceedings of the 17th International Conference on vol 1, Issue, 23–26 Aug. 2004, pp 568–571

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alirezaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsousi, M., Eftekhari, A., Kocharian, A. et al. Endocardial boundary extraction in left ventricular echocardiographic images using fast and adaptive B-spline snake algorithm. Int J CARS 5, 501–513 (2010). https://doi.org/10.1007/s11548-010-0404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0404-0

Keywords

Navigation