Skip to main content

Advertisement

Log in

Pulse HIV Vaccination: Feasibility for Virus Eradication and Optimal Vaccination Schedule

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We modify the classical virus dynamics model by incorporating an immune response with fixed or fluctuating vaccination frequencies and dosages to obtain a system of impulsive differential equations for the virus dynamics of both the wild-type and mutant strains. This model framework permits us to obtain precise conditions for the virus elimination, which are much more feasible compared with existing results, which require frequent vaccine administration with large dosage. We also consider the corresponding impulsive optimal control problem to describe when and how much of the vaccine should be administered in order to maximize levels of healthy CD4+ T cells and immune response cells. A gradient-based optimization method is applied to obtain the optimal schedule numerically. For a case study when the CTL vaccine is administered in a period of one year, our numerical studies support the optimal vaccination schedule consisting of vaccine administration three times, with the first dosage strong (to boost the immune system), followed by a second dosage shortly after (to strengthen the immune response) and then the third and final dosage long after (to ensure the immune system can handle viruses rebound).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agur, Z., Cojocaru, L., et al. (1993). Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA, 90, 11698–11702.

    Article  Google Scholar 

  • Bacaër, N. (2007). Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bull. Math. Biol., 69, 1067–1091.

    Article  MathSciNet  MATH  Google Scholar 

  • Barles, G. (1985). Deterministic impulsive control problems. SIAM J. Control Optim., 23, 419–432.

    Article  MathSciNet  MATH  Google Scholar 

  • Barouch, D. H., Kunstman, J., et al. (2002). Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature, 415, 335–339.

    Article  Google Scholar 

  • Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Philadelphia: Wiley.

    Google Scholar 

  • Cappuccio, A., Castiglione, F., & Piccoli, B. (2007). Determination of the optimal therapeutic protocol in cancer immunotherapy. Math. Biosci., 209, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Castiglione, F., & Piccoli, B. (2006). Optimal control in a model of dendritic cell transfection cancer immunotherapy. Bull. Math. Biol., 68, 255–274.

    Article  MathSciNet  Google Scholar 

  • Castiglione, F., & Piccoli, B. (2007). Cancer immunotherapy, mathematical modelling, and optimal control. J. Theor. Biol., 247, 713–732.

    Article  MathSciNet  Google Scholar 

  • Christian, L. A., & Rob, J. D. (2008). Dynamics of immune escape during HIV/SIV infection. PLoS Comput. Biol., 4(7), e1000103.

    Article  Google Scholar 

  • Culshaw, R. V., Ruan, S. G., & Spiteri, R. J. (2004). Optimal HIV treatment by maximising immune response. J. Math. Biol., 48, 545–562.

    Article  MathSciNet  MATH  Google Scholar 

  • Currie, J. R., Visawapoka, U., et al. (2006). CTL epitope distribution patterns in the Gag and Nef proteins of HIV-1 from subtype A infected subjects in Kenya: use of multiple peptide sets increases the detectable breadth of the CTL response. BMC Immunol., 7(8).

  • De Quadros, C. A., Andrus, J. K., & Olive, J. M. (1991). Eradication of poliomyelitis: progress in the Americas. Pediatr. Infect. Dis. J., 10(3), 222–229.

    Article  Google Scholar 

  • Fister, K. R., Lenhart, S., & McNally, J. S. (1998). Optimizing chemotherapy in an HIV model. Electron. J. Differ. Equ., 32, 1–12.

    MathSciNet  Google Scholar 

  • Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer.

    Book  MATH  Google Scholar 

  • Jennings, L. S., Fisher, M. E., Teo, K. L., & Goh, C. J. (1991). MISER3: solving optimal control problems—an update. Adv. Eng. Softw. Workstn., 13, 190–196.

    Article  MATH  Google Scholar 

  • Kirschner, D. E., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. J. Math. Biol., 35, 775–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Klausner, R. D., Fauci, A. S., et al. (2003). The need for a global HIV vaccine enterprise. Science, 300, 2036–2039.

    Article  Google Scholar 

  • Konrad, B. P., Vaidya, N. K., & Smith, R. J. (2011). Modelling mutation to a cytotoxic T-lymphocyte HIV vaccine. Math. Popul. Stud., 18, 122–149.

    MathSciNet  MATH  Google Scholar 

  • Li, X., & Yong, J. (1995). Optimal control theory for infinite-dimensinal systems. Boston: Birkhäuser.

    Book  Google Scholar 

  • Liu, Y., Teo, K. L., et al. (1998). On a class of optimal control problems with state jumps. J. Optim. Theory Appl., 98(1), 65–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, J., Lou, Y. J., & Wu, J. H. (2011). Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol. doi:10.1007/s00285-011-0474-9.

    Google Scholar 

  • Luo, L., Li, Y., Chang, J. S., et al. (1998). Induction of V3-specific cytotoxic T lymphocyte responses by HIV gag particles carrying multiple immunodominant V3 epitopes of gp120. Virology, 240, 316–325.

    Article  Google Scholar 

  • Marino, S., Hogue, I. B., et al. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178–196.

    Article  MathSciNet  Google Scholar 

  • McMichael, A. J., & Hanke, T. (2003). HIV vaccines 1983–2003. Nat. Med., 9, 874–880.

    Article  Google Scholar 

  • Nowak, M. A., & McLean, A. R. (1991). A mathematical model of vaccination against HIV to prevent the development of AIDS. Proc. Biol. Sci., 246, 141–146.

    Article  Google Scholar 

  • Piccoli, B., & Castiglione, F. (2006). Optimal vaccine scheduling in cancer immunotherapy. Physica A, 370(2), 672–680.

    Article  MathSciNet  Google Scholar 

  • Pontryagin, L., Boltyanskii, V., et al. (1986). The mathematical theory of optimal process. New York: Gordon & Breach.

    Google Scholar 

  • Rong, L. B., Feng, Z. L., & Perelson, A. S. (2007). Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull. Math. Biol., 69, 2027–2060.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossio, J. L., Esser, M. T., et al. (1998). Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J. Virol., 72, 7992–8001.

    Google Scholar 

  • Sabin, A. B. (1991). Measles, killer of millions in developing countries: strategies of elimination and continuing control. Eur. J. Epidemiol., 7, 1–22.

    Google Scholar 

  • Shulgin, B., Stone, L., & Agur, Z. (1998). Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol., 60, 1123–1148.

    Article  MATH  Google Scholar 

  • Smith, R. J., & Schwartz, E. J. (2008). Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: how often should you vaccinate and how strong should the vaccine be? Math. Biosci., 212, 180–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, S. M. (2004). HIV CTL escape: at what cost? Retrovirology, 1(8).

  • Wahl, L. M., & Nowak, M. A. (2000). Adherence and drug resistance: predictions for therapy outcome. Proc. R. Soc. Lond. B, 267, 835–843.

    Article  Google Scholar 

  • Wang, W. D., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ., 20, 699–717.

    Article  MATH  Google Scholar 

  • Wein, L. M., Zenios, S. A., & Nowak, M. A. (1997). Dynamic multidrug therapies for HIV: a control theoretic approach. J. Theor. Biol., 185, 15–29.

    Article  Google Scholar 

  • Wodarz, D., & Lloyd, A. L. (2004). Immune responses and the emergence of drug-resistant virus strains in vivo. Proc. R. Soc. Lond. B, 271, 1101–1109.

    Article  Google Scholar 

  • Yang, Y. P., & Xiao, Y. N. (2010). The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model., 52, 1591–1604.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Y. P., & Xiao, Y. N. (2012). Threshold dynamics for compartmental epidemic models with impulses. Nonlinear Anal., Real World Appl., 13, 224–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, F., & Zhao, X.-Q. (2007). A periodic epidemic model in a patchy environment. J. Math. Anal. Appl., 325, 496–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.-Q. (2003). Dynamical systems in population biology. New York: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

Y. Yang acknowledges China Scholarship Council for the financial support while visiting York University. The authors are supported by the National Mega-project of Science Research (2012ZX10001-001), by the National Natural Science Foundation of China (NSFC 11171268), and by the Fundamental Research Funds for the Central Universities (08143042) (YX). The authors are also supported by the Canada Research Chair Program, the Natural Sciences and Engineering Research Council of Canada, the Mitacs/Mprime (JW), as well as the International Development Research Center (Ottawa, Canada, 104519-010) (YX, JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Xiao.

Appendix

Appendix

Proof of Lemma 3.1

By the continuity of solutions with respect to the initial values, ∀ϵ>0 there exists δ 0>0 such that for all x 0X 0 with ∥x 0M 1∥≤δ 0, there holds ∥u(t,x 0)−u(t,M 1))∥≤ϵ,∀t∈[0,τ]. We further claim that Eq. (5) holds. Assume, by contradiction, that (5) does not hold. Then we have

$$\limsup_{m\rightarrow \infty}d\bigl(P^{m}\bigl(x^{0} \bigr),M_{1}\bigr)< \delta_{0}, $$

for some x 0X 0. Without loss of generality, we assume that d(P m(x 0),M 1)<δ 0, for all m≥0. It follows that

$$\bigl\|u\bigl(t,P^{m}\bigl(x^{0}\bigr)\bigr)-u(t,M_{1}) \bigr\| \leq \epsilon,\quad \forall t\in [0, \tau]. $$

For any t≥0, let t=+t′, where t′∈[0,τ] and \(m=[\frac{t}{\tau}]\) is the greatest integer less than or equal to \(\frac{t}{\tau}\). Thus, we get

$$\bigl\|u\bigl(t,x^{0}\bigr)-u(t,M_{1}) \bigr\|= \bigl\|u \bigl(t',P^{m}\bigl(x^{0}\bigr)\bigr)-u \bigl(t',M_{1}\bigr) \bigr\|<\epsilon,\quad \forall t \geq 0. $$

Note that (T(t),T w (t),V w (t),T r (t),V r (t),C(t))=u(t,x 0). It then follows that T w (t)<ϵ,V w (t)<ϵ,T r (t)<ϵ,V r (t)<ϵ,∀t≥0. Then from the first and last equations of (1), we have

Consider an auxiliary system

$$ \everymath{\displaystyle} \begin{array}{l} \frac{dT}{dt}= \lambda-\delta_TT-\epsilon \beta_wT-\epsilon \beta_rT,\\[13pt] \frac{dC}{dt}= (2\epsilon\alpha-\delta_C)C,\quad t\neq i\tau,\\[13pt] C\bigl(i\tau^+\bigr)=C(i\tau)+\tilde{C},\quad t=i\tau. \end{array} $$
(20)

For any ϵ>0, system (20) admits a globally asymptotically stable solution \((\hat{T}(0,\epsilon), C^{*}(t,\epsilon))\), where \(\hat{T}(0,\epsilon)=\lambda/(\delta_{T}+\epsilon \beta_{w}+\epsilon \beta_{r}), C^{*}(t,\epsilon)= \tilde{C}e^{(2\epsilon\alpha-\delta_{C})(t-n\tau)}/ (1-e^{(2\epsilon\alpha-\delta_{C})\tau}), t\in (i\tau, (i+1)\tau]\). Then for any ξ>0, there exists t 3>0 such that \(\hat{T}(t,\epsilon)\geq \hat{T}(0,\epsilon)-\xi, \hat{C}(t,\epsilon)\leq C^{*}(t,\epsilon)+\xi\) for tt 3, \((\hat{T}(t,\epsilon), \hat{C}(t,\epsilon))\) is any solution of Eq. (20). Note that \(\hat{T}(0,\epsilon) \rightarrow T_{0}, C^{*}(t,\epsilon)\rightarrow C^{*}(t)\) as ϵ→0. Then for any \(\bar{\eta}>0\) there exists \(\bar{\epsilon}>0\) such that \(\hat{T}(0,\epsilon)\geq T_{0}-\bar{\eta}, C^{*}(t,\epsilon)\leq C^{*}(t)+\bar{\eta}\) for \(\epsilon<\bar{\epsilon}\). It follows that for tt 3 and ϵ small enough (\(\epsilon<\bar{\epsilon}\))

It follows from Eq. (20) and comparison principles that for tt 3 and ϵ small enough,

$$T(t)\geq \hat{T}(t,\epsilon)\geq T_0-\eta,\qquad C(t)\leq \hat{C}(t, \epsilon)\leq C^*(t)+\eta. $$

Consider the fourth and the fifth equations in system (1) with the nonnegativity of the solutions, there holds for tt 3

$$ \everymath{\displaystyle} \begin{array} {l} T_r'(t) \geq \beta_r(T_0+\eta)V_r- \delta_IT_r-p_rT_r\bigl(C^*(t)+ \eta\bigr), \\[6pt] V_r'(t)= N_r\delta_IT_r- \delta_VV_r. \end{array} $$
(21)

Consider the corresponding comparison differential equations of system (21),

$$ \everymath{\displaystyle} \begin{array} {l} \hat{T}_r'(t)= \beta_r(T_0+\eta)\hat{V}_r- \delta_I\hat{T}_r-p_r\hat{T}_r \bigl(C^*(t)+\eta\bigr), \\[6pt] \hat{V}_r'(t)= N_r\delta_I \hat{T}_r-\delta_V\hat{V}_r, \end{array} $$
(22)

By Zhang and Zhao (2007) (Lemma 2.1), we know that there exists a positive, τ-periodic function p(t)=(p 1(t),p 2(t)), such that \(e^{\mu_{2}t}p(t)\) is a solution of system (22), where \(\mu_{2}=\frac{1}{\tau}\ln\rho(\varPhi_{F_{r}(\eta)-V_{r}(\eta)}(\tau))\). Since \(\rho(\varPhi_{F_{r}(\eta)-V_{r}(\eta)}(\tau))\) is continuous for small η and \(R_{0}^{r}>1\) indicates that \(\rho(\varPhi_{F_{r}-V_{r}}(\tau))>1\), we can choose η small enough such that \(\rho(\varPhi_{F_{r}(\eta)-V_{r}(\eta)}(\tau))>1\), that is μ 2>0. Let t=>t 3, and n be nonnegative integer, we get

For any negative initial values (T I (t 3),V I (t 3))T of system (21), there exits a sufficiently small z >0, such that (T r (t 3),V r (t 3))Tz (p 1(0),p 2(0))T. By the comparison theorem, we have \((T_{r}(t),V_{r}(t))^{T}\geq z_{*}e^{\mu_{2}(t-t_{3})}(\hat{T}_{r}(t-t_{3}),\hat{V}_{r}(t-t_{3}))^{T}\), for all tt 3. Thus, we obtain T r ()→∞,V r ()→∞, as n→∞, a contradiction. Hence, Eq. (5) holds. This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xiao, Y. & Wu, J. Pulse HIV Vaccination: Feasibility for Virus Eradication and Optimal Vaccination Schedule. Bull Math Biol 75, 725–751 (2013). https://doi.org/10.1007/s11538-013-9831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9831-8

Keywords

Navigation