Skip to main content

Advertisement

Log in

Success rate of a biological invasion in terms of the spatial distribution of the founding population

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze the role of the spatial distribution of the initial condition in reaction–diffusion models of biological invasion. Our study shows that, in the presence of an Allee effect, the precise shape of the initial (or founding) population is of critical importance for successful invasion. Results are provided for one-dimensional and two-dimensional models. In the one-dimensional case, we consider initial conditions supported by two disjoint intervals of length L/2 and separated by a distance α. Analytical as well as numerical results indicate that the critical size L (α) of the population, where the invasion is successful if and only if L>L (α), is a continuous function of α and tends to increase with α, at least when α is not too small. This result emphasizes the detrimental effect of fragmentation. In the two-dimensional case, we consider more general, stochastically generated initial conditions u 0, and we provide a new and rigorous definition of the rate of fragmentation of u 0. We then conduct a statistical analysis of the probability of successful invasion depending on the size of the support of u 0 and the fragmentation rate of u 0. Our results show that the outcome of an invasion is almost completely determined by these two parameters. Moreover, we observe that the minimum abundance required for successful invasion tends to increase in a non-linear fashion with the fragmentation rate. This effect of fragmentation is enhanced as the strength of the Allee effect is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allee, W. C. (1938). The social life of animals. New York: Norton.

    Book  Google Scholar 

  • Aronson, D. G., & Weinberger, H. G. (1978). Multidimensional non-linear diffusion arising in population-genetics. Advances in Mathematics, 30(1), 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and population management. Trends in Ecology & Evolution, 22, 185–191.

    Article  Google Scholar 

  • Berestycki, H., Hamel, F., & Nadin, G. (2008). Asymptotic spreading in heterogeneous diffusive excitable media. Journal of Functional Analysis, 255(9), 2146–2189.

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Hamel, F., & Roques, L. (2005). Analysis of the periodically fragmented environment model: I - Species persistence. Journal of Mathematical Biology, 51(1), 75–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Hamel, F., & Rossi, L. (2007). Liouville-type results for semilinear elliptic equations in unbounded domains. Annali Di Matematica Pura Ed Applicata, 186(3), 469–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction–diffusion equations. Chichester: Wiley.

    MATH  Google Scholar 

  • DAISIE (2009). Handbook of alien species in Europe. Dordrecht: Springer.

    Google Scholar 

  • DAISIE (2010). BioRisk 4: Alien terrestrial arthropods of Europe, vol. 1 and 2. Sofia/Moscow: Pensoft.

    Google Scholar 

  • Dennis, B. (1989). Allee effects: population growth, critical density, and the chance of extinction. Natural Resource Modeling, 3, 481–538.

    MathSciNet  MATH  Google Scholar 

  • Dobson, A. P., & May, R. M. (1986). Patterns of invasions by pathogens and parasites. In H. A. Mooney & J. A. Drake (Eds.), Ecology of biological invasions of north America and Hawaii (pp. 58–76). New York: Springer.

    Chapter  Google Scholar 

  • Drake, J. M. (2004). Allee effects and the risk of biological invasion. Risk Analysis, 24, 795–802.

    Article  Google Scholar 

  • Drury, K. L. S., Drake, J. M., Lodge, D. M., & Dwyer, G. (2007). Immigration events dispersed in space and time: Factors affecting invasion success. Ecological Modelling, 206, 63–78.

    Article  Google Scholar 

  • Du, Y., & Matano, H. (2010). Convergence and sharp thresholds for propagation in nonlinear diffusion problems. Journal of the European Mathematical Society, 12, 279–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.

    Article  Google Scholar 

  • Fife, P. C. (1979). Long-time behavior of solutions of bistable non-linear diffusion equations. Archive for Rational Mechanics and Analysis, 70(1), 31–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Fife, P. C., & McLeod, J. (1977). The approach of solutions of nonlinear diffusion equations to traveling front solutions. Archive for Rational Mechanics and Analysis, 65(1), 335–361.

    MathSciNet  MATH  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 335–369.

    Google Scholar 

  • Friedman, A. (1964). Partial differential equations of parabolic type. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Gardner, R. H., Milne, B. T., Turner, M. G., & O’Neill, R. V. (1987). Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology, 1, 19–28.

    Article  Google Scholar 

  • Hamel, F., Fayard, J., & Roques, L. (2010). Spreading speeds in slowly oscillating environments. Bulletin of Mathematical Biology, 72(5), 1166–1191.

    Article  MathSciNet  MATH  Google Scholar 

  • Harary, F., & Harborth, H. (1976). Extremal animals. Journal of Combinatorics, Information & System Sciences, 1, 1–8.

    MathSciNet  MATH  Google Scholar 

  • IUCN (2000). Guidelines for the prevention of biodiversity loss caused by alien invasive species prepared by the Species Survival Commission (SSC) invasive species specialist group. Approved by the 51st Meeting of the IUCN Council, Gland.

  • IUCN (2002). Policy recommendations papers for sixth meeting of the Conference of the Parties to the Convention on Biological Diversity (COP6). The Hague, Netherlands.

  • Kanarek, A. R., & Webb, C. T. (2010). Allee effects, adaptive evolution, and invasion success. Evolutionary Applications, 3, 122–135.

    Article  Google Scholar 

  • Kanel, J. I. (1964). Stabilization of solutions of the equations of combustion theory with finite initial functions. Matematicheskii Sbornik, 65, 398–413.

    MathSciNet  Google Scholar 

  • Keitt, T. H. (2000). Spectral representation of neutral landscapes. Landscape Ecology, 15, 479–494.

    Article  Google Scholar 

  • Keitt, T. H., Lewis, M. A., & Holt, R. D. (2001). Allee effects, invasion pinning, and species’ borders. The American Naturalist, 157, 203–216.

    Article  Google Scholar 

  • Kenis, M. (2006). Insects-insecta. In R. Wittenberg (Ed.), Invasive alien species in Switzerland. An inventory of alien species and their threat to biodiversity and economy in Switzerland (pp. 131–211). Swiss Confederation—Federal Office for the Environment Environmental Studies.

    Google Scholar 

  • Kenis, M., Auger-Rozenberg, M.-A., Roques, A., Timms, L., Péré, C., Cock, M. J. W., Settele, J., Augustin, S., & Lopez-Vaamonde, C. (2009). Ecological effects of invasive alien insects. Biological Invasions, 11(1), 21–45.

    Article  Google Scholar 

  • Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species’ range. The American Naturalist, 150, 1–23.

    Article  Google Scholar 

  • Kolmogorov, A. N., Petrovsky, I. G., & Piskunov, N. S. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin de l’Université d’État de Moscou, Série Internationale A, 1, 1–26.

    Google Scholar 

  • Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Population Ecology, 51, 341–354.

    Article  Google Scholar 

  • Lande, R. (1998). Demographic stochasticity and Allee effect on a scale with isotrophic noise. Oikos, 83, 353–358.

    Article  Google Scholar 

  • Leung, B., Drake, J. M., & Lodge, D. M. (2004). Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology, 85, 1651–1660.

    Article  Google Scholar 

  • Lewis, M. A., & Kareiva, P. (1993). Allee dynamics and the speed of invading organisms. Theoretical Population Biology, 43, 141–158.

    Article  MATH  Google Scholar 

  • Mccarthy, M. A. (1997). The Allee effect, finding mates and theoretical models. Ecological Modelling, 103(1), 99–102.

    Article  Google Scholar 

  • Murray, J. D. (2002). Interdisciplinary applied mathematics: Vol. 17. Mathematical biology (3rd ed.). New York: Springer.

    MATH  Google Scholar 

  • Pease, C. P., Lande, R., & Bull, J. J. (1989). A model of population growth, dispersal and evolution in a changing environment. Ecology, 70, 1657–1664.

    Article  Google Scholar 

  • Protter, M. H., & Weinberger, H. F. (1967). Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. Dane, & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.

    Article  Google Scholar 

  • Roques, A., Rabitsch, W., Rasplus, J.-Y., Lopez-Vaamonde, C., Nentwig, W., & Kenis, M. (2009). Alien terrestrial invertebrates of Europe. Dordrecht: Springer.

    Google Scholar 

  • Roques, L., & Chekroun, M. D. (2007). On population resilience to external perturbations. SIAM Journal on Applied Mathematics, 68(1), 133–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Roques, L., & Chekroun, M. D. (2010). Does reaction–diffusion support the duality of fragmentation effect? Ecological Complexity, 7, 100–106.

    Article  Google Scholar 

  • Roques, L., & Hamel, F. (2007). Mathematical analysis of the optimal habitat configurations for species persistence. Mathematical Biosciences, 210(1), 34–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Roques, L., & Stoica, R. S. (2007). Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments. Journal of Mathematical Biology, 55(2), 189–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Roques, L., Roques, A., Berestycki, H., & Kretzschmar, A. (2008). A population facing climate change: joint influences of Allee effects and environmental boundary geometry. Population Ecology, 50(2), 215–225.

    Article  Google Scholar 

  • Shigesada, N., & Kawasaki, K. (1997). Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MathSciNet  MATH  Google Scholar 

  • Turchin, P. (1998). Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland, MA.

  • Veit, R. R., & Lewis, M. A. (1996). Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. The American Naturalist, 148, 255–274.

    Article  Google Scholar 

  • Vilà, M., Pyšek, B. C. P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., Hulme, P. E., & Partners, D. (2009). How well do we understand the impacts of alien species on ecosystem services? A pan-European cross-taxa assessment. Frontiers in Ecology and the Environment.

  • Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kűhn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarošík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., Ott, J., Panov, V. E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K., & Settele, J. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24(12), 686–693.

    Article  Google Scholar 

  • Yamanaka, T., & Liebhold, A. M. (2009). Mate-location failure, the Allee effect, and the establishment of invading populations. Population Ecology, 51, 337–340.

    Article  Google Scholar 

  • Zlatoš, A. (2006). Sharp transition between extinction and propagation of reaction. Journal of the American Mathematical Society, 19, 251–263.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Roques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnier, J., Roques, L. & Hamel, F. Success rate of a biological invasion in terms of the spatial distribution of the founding population. Bull Math Biol 74, 453–473 (2012). https://doi.org/10.1007/s11538-011-9694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9694-9

Keywords

Navigation