Skip to main content

Advertisement

Log in

Anti-Inflammatory Effects of Ladostigil and Its Metabolites in Aged Rat Brain and in Microglial Cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Impaired mitochondrial function accompanied by microglial activation and the release of nitric oxide (NO) and pro-inflammatory cytokines has been reported in Alzheimer's disease, its prodromal phase of Mild Cognitive Impairment (MCI) and in aged rats. The present study showed that 6 months treatment of 16 month old rats with ladostigil (1 mg/kg/day), a novel drug designed for the treatment of MCI, prevented the development of spatial memory deficits at 22 months of age and significantly decreased the gene expression of IL-1β, IL-6, TNF-α and inducible nitric oxide synthase (iNOS) in the parietal cortex. It was also shown that concentrations ranging from 1nM-1 μM of ladostigil and three of its active metabolites inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) from mouse microglial cells by up to 35–40 %. Ladostigil and its metabolites (10nM) also reduced TNF-α mRNA and protein by 25–35 % and IL-1β and inducible nitric oxide synthase (iNOS) mRNA by 20–35 %. The concentration of 10nM is in the range of that of the parent drug, R-MCPAI and R-HPAI found in plasma after oral administration of ladostigil (1 mg/kg/day) to rats. All the compounds inhibited the degradation of IkB-α and nuclear translocation of the p65 subunit of NF-kB. They also inhibited phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK), but had no effect on that of JNK. We propose that the anti-inflammatory activity may contribute towards the neuroprotective action of ladostigil against the development of memory impairments induced by aging or toxin-induced microglial activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591. doi:10.1146/annurev.immunol.15.1.563

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2009) The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J Mol Neurosci 37(2):135–145. doi:10.1007/s12031-008-9139-6

    Article  PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18(5):1633–1641

    PubMed  CAS  Google Scholar 

  • Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23(9):3807–3819

    PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587(2):250–256

    Article  PubMed  CAS  Google Scholar 

  • Brown MA, Jones WK (2004) NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 9:1201–1217

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res 1148:243–248. doi:10.1016/j.brainres.2007.02.084

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349. doi:10.1146/annurev.neuro.22.1.319

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E (2003) Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord 17(2):117–126

    Article  PubMed  CAS  Google Scholar 

  • Frost RA, Nystrom GJ, Lang CH (2004) Lipopolysaccharide stimulates nitric oxide synthase-2 expression in murine skeletal muscle and C(2)C(12) myoblasts via Toll-like receptor-4 and c-Jun NH(2)-terminal kinase pathways. Am J Physiol Cell Physiol 287(6):C1605–C1615. doi:10.1152/ajpcell.00010.200400010.2004

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107(4):618–626

    Article  PubMed  CAS  Google Scholar 

  • Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94

    Article  PubMed  CAS  Google Scholar 

  • Hwang J, Hwang H, Lee HW, Suk K (2010) Microglia signaling as a target of donepezil. Neuropharmacology 58(7):1122–1129. doi:10.1016/j.neuropharm.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  • Kiss (2007) Pharmacokinetic study and metabolic profiling in rats following a single oral administration of 14C-ladostigil tartrate. Pharmaceutical Works, Hungary Final Report No SB-2006-004

  • Koistinaho M, Koistinaho J (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40(2):175–183. doi:10.1002/glia.10151

    Article  PubMed  Google Scholar 

  • Li AJ, Katafuchi T, Oda S, Hori T, Oomura Y (1997) Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res 748(1–2):30–38

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Hoi Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease. Curr Alzheimer Res 8(1):67–80

    Article  PubMed  Google Scholar 

  • Luques L, Shoham S, Weinstock M (2007) Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol 206(2):209–219. doi:10.1016/j.expneurol.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  • Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmunomodulation in Alzheimer's disease. Ann N Y Acad Sci 1153:240–246. doi:10.1111/j.1749-6632.2008.03972.x

    Article  PubMed  CAS  Google Scholar 

  • Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res Rev 8(4):285–305. doi:10.1016/j.arr.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Weinstock M, Youdim MB, Nagai M, Naoi M (2003) Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 341(3):233–236

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119(4):252–265. doi:10.1111/j.1600-0447.2008.01326.x

    Article  PubMed  CAS  Google Scholar 

  • Moynagh PN (2005) The NF-kappaB pathway. J Cell Sci 118(Pt 20):4589–4592. doi:10.1242/jcs.02579

    Article  PubMed  CAS  Google Scholar 

  • Murray CA, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18(8):2974–2981

    PubMed  CAS  Google Scholar 

  • Nitz D (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiol Learn Mem 91(2):179–185. doi:10.1016/j.nlm.2008.08.007

    Article  PubMed  Google Scholar 

  • Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M, Brooks DJ (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72(1):56–62. doi:10.1212/01.wnl.0000338622.27876.0d

    Article  PubMed  CAS  Google Scholar 

  • Palmer K, Berger AK, Monastero R, Winblad B, Backman L, Fratiglioni L (2007) Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology 68(19):1596–1602. doi:10.1212/01.wnl.0000260968.92345.3f

    Article  PubMed  CAS  Google Scholar 

  • Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72(5):1948–1958

    Article  PubMed  CAS  Google Scholar 

  • Persson CM, Wallin AK, Levander S, Minthon L (2009) Changes in cognitive domains during three years in patients with Alzheimer's disease treated with donepezil. BMC Neurol 9:7. doi:10.1186/1471-2377-9-7

    Article  PubMed  Google Scholar 

  • Raschetti R, Albanese E, Vanacore N, Maggini M (2007) Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med 4(11):e338. doi:10.1371/journal.pmed.0040338

    Article  PubMed  Google Scholar 

  • Reichert F, Rotshenker S (2003) Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis 12(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Rost KL (2003) A Phase-I, randomized, double-blind, placebo controlled, ascending single dose study to assess the safety, tolerability and pharmacokinetics of TV 3326 in healthy male volunteers. Parexel, Berlin, Germany Final Report Study No TV-3326/101

  • Roy A, Jana A, Yatish K, Freidt MB, Fung YK, Martinson JA, Pahan K (2008) Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: implications for neurodegenerative diseases. Free Radic Biol Med 45(5):686–699. doi:10.1016/j.freeradbiomed.2008.05.026

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188. doi:10.1021/tx700210j

    Article  PubMed  Google Scholar 

  • Schneider LS, Insel PS, Weiner MW (2011) Alzheimer’s disease neuroimaging initiative. Treatment with cholinesterase inhibitors and memantine of patients in the alzheimer’s disease neuroimaging initiative. Arch Neurol 68(1):58–66

    Google Scholar 

  • Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J, Perry G (2005) Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 26(5):579–580. doi:10.1016/j.neurobiolaging.2004.09.021

    Article  PubMed  CAS  Google Scholar 

  • Sterling J, Herzig Y, Goren T, Finkelstein N, Lerner D, Goldenberg W, Miskolczi I, Molnar S, Rantal F, Tamas T, Toth G, Zagyva A, Zekany A, Finberg J, Lavian G, Gross A, Friedman R, Razin M, Huang W, Krais B, Chorev M, Youdim MB, Weinstock M (2002) Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer's disease. J Med Chem 45(24):5260–5279

    Article  PubMed  CAS  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 20(6):947–956. doi:10.1159/000110455

    Article  CAS  Google Scholar 

  • Wang Z, Ma W, Chabot JG, Quirion R (2010) Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFkappaB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia. Pain 151(1):194–205. doi:10.1016/j.pain.2010.07.006

    Article  PubMed  CAS  Google Scholar 

  • Weinstock M (2005) Kinetic studies on the interaction of acetylcholinesterase with ladostigil and its major metabolites. Final Report to Teva No TV-3326/MWR/014

  • Weinstock M, Goren T, Youdim MBH (2000) Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer’s disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res 50:216–222

    Article  CAS  Google Scholar 

  • Weinstock M, Luques L, Poltyrev T, Bejar C, Shoham S (2011) Ladostigil prevents age-related glial activation and spatial memory deficits in rats. Neurobiol Aging 32(6):1069–1078. doi:10.1016/j.neurobiolaging.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J (2004) Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21(7):453–478

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Weinstock M (2001) Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 21(6):555–573

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Wang WP, Feng N, Wang L, Wang XL (2011) Donepezil attenuated oxygen-glucose deprivation insult by blocking Kv2.1 potassium channels. Eur J Pharmacol 657(1–3):76–83. doi:10.1016/j.ejphar.2011.01.054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Corina Bejar who performed the Morris water maze tests.

The authors have no conflict of interest that could bias their work and none of them receives any remuneration from a Pharmaceutical company associated with the clinical development of ladostigil. The research was supported by independent funds of Marta Weinstock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Weinstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panarsky, R., Luques, L. & Weinstock, M. Anti-Inflammatory Effects of Ladostigil and Its Metabolites in Aged Rat Brain and in Microglial Cells. J Neuroimmune Pharmacol 7, 488–498 (2012). https://doi.org/10.1007/s11481-012-9358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9358-z

Keywords

Navigation