Skip to main content
Log in

Optimized Sensitivity and Electric Field Enhancement by Controlling Localized Surface Plasmon Resonances for Bowtie Nanoring Nanoantenna Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The surface plasmon resonances of gold bowtie nanoring antenna arrays were simulated using the finite-difference time-domain method in the present study. Both the local field and transmission spectra of bowtie nanoring antennas with various nanohole sizes were examined to find the optimum conditions to induce the greatest local electromagnetic field enhancement and sensitivity compared to the solid bowtie antenna. With the optimized nanohole size of bowtie nanoring, the local electromagnetic field enhancement, the decay length of the electric field, and the bulk sensitivity were increased as high as about 73, 349, and 63 %, respectively, compared to the solid bowtie antenna. The electric field enhancement profile and the charge distribution of the bowtie nanoring antennas were studied to characterize the coupled plasmon configurations, and it was used to explore the mechanism of enhanced sensitivity and resonance-wavelength shift of bowtie nanoring array with different surrounding dielectric media. This highly localized electromagnetic field enhancement and sensitive bowtie nanoring array system can be applied in the field of surface-enhanced Raman scattering and bio-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  2. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4:1029–1034

    Article  CAS  Google Scholar 

  3. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  4. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:6961–6968

    Article  CAS  Google Scholar 

  5. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  6. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  7. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412–417

    Article  CAS  Google Scholar 

  8. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29

    Article  Google Scholar 

  9. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  10. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  11. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  12. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  13. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846–9853

    Article  CAS  Google Scholar 

  14. Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang Z, Gu B (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10:4952–4955

    Article  CAS  Google Scholar 

  15. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner W (2004) Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett 4:957–961

    Article  CAS  Google Scholar 

  16. Sundaramurthy A, Crozier K, Kino G, Fromm D, Schuck P, Moerner W (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72:165409

    Article  Google Scholar 

  17. Hsueh CH, Lin CH, Li JH, Hatab NA, Gu B (2011) Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures. Opt Express 19:19660–19667

    Article  CAS  Google Scholar 

  18. Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  Google Scholar 

  19. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065–1070

    Article  CAS  Google Scholar 

  20. Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, Nichtl A, Kürzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3:935–938

    Article  CAS  Google Scholar 

  21. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113–1118

    Article  CAS  Google Scholar 

  22. Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108:17290–17294

    Article  CAS  Google Scholar 

  23. Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett 12:1648–1654

    Article  CAS  Google Scholar 

  24. Chau YF, Yeh HH, Tsai D (2010) A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J Electromagn Wave 24:1621–1632

    Article  Google Scholar 

  25. Sederberg S, Elezzabi A (2011) Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt Express 19:15532–15537

    Article  CAS  Google Scholar 

  26. Wang L, Cai L, Zhang J, Bai W, Hu H, Song G (2011) Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 42:1263–1266

    Article  CAS  Google Scholar 

  27. Nien LW, Lin SC, Chao BK, Chen MJ, Li JH, Hsueh CH (2013) Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J Phys Chem C 117:25004–25011

    Article  CAS  Google Scholar 

  28. Johnson PB, Christy R (1972) Phys Rev B Solid State 6:4370–4379

    Article  CAS  Google Scholar 

  29. Palik ED (1998) Handbook of optical constants of solids. vol 3

  30. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  31. Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123:114713

    Article  Google Scholar 

  32. Averitt R, Sarkar D, Halas N (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220

    Article  CAS  Google Scholar 

  33. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  34. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858

    Article  CAS  Google Scholar 

  35. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  CAS  Google Scholar 

  36. Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, Van Duyne RP (2005) Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B 109:20522–20528

    Article  CAS  Google Scholar 

  37. Fan J, Sugioka K, Toyoda K (1991) Low-temperature growth of thin films of Al2O3 by sequential surface chemical reaction of trimethylaluminum and H2O2. Jpn J Appl Phys 30:L1139

    Article  CAS  Google Scholar 

  38. Sadayori N and Hotta Y (2004) Polycarbodiimide having high index of refraction and production method thereof. Patent US20040158021

  39. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  40. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648

    Article  CAS  Google Scholar 

  41. Rindzevicius T, Alaverdyan Y, Käll M, Murray WA, Barnes WL (2007) Long-range refractive index sensing using plasmonic nanostructures. J Phys Chem C 111:11806–11810

    Article  CAS  Google Scholar 

  42. Szunerits S, Das MR, Boukherroub R (2008) Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses. J Phys Chem C 112:8239–8243

    Article  CAS  Google Scholar 

  43. Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl Phys Lett 93:181108

    Article  Google Scholar 

  44. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  45. Prodan E, Lee A, Nordlander P (2002) The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem Phys Lett 360:325–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the Ministry of Science and Technology, Taiwan under Contract no. MOST 103-2221-E-002-076-MY3, and Excellent Research Projects of National Taiwan University under Project no. 103R8918. We are grateful to the National Center for High-Performance Computing, Taiwan, for providing us with the computation time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hway Hsueh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nien, LW., Chao, BK., Li, JH. et al. Optimized Sensitivity and Electric Field Enhancement by Controlling Localized Surface Plasmon Resonances for Bowtie Nanoring Nanoantenna Arrays. Plasmonics 10, 553–561 (2015). https://doi.org/10.1007/s11468-014-9840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9840-y

Keywords

Navigation