Skip to main content
Log in

Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report a strategy to improve two types of the figure of merit (FOM and FOM*) of the refractive index sensitivity of a gold nanobar array localized surface plasmon resonance (LSPR) biosensor by simply placing it close to a thin gold film with a dielectric spacer. The thickness of the dielectric spacer determines the plasmon coupling strength between the gold nanobars and the gold film and consequently the FOM and FOM* of the biosensor. From our calculations, when the spacer thickness is 20 nm, the FOM and FOM* reach maximal (4.68 and 310, respectively) and the sensitivity remains at a high value of 600 nm per refractive index unit. This biosensor scheme is practically realizable, and this strategy is also potentially applicable to the LSPR biosensors with other geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  2. Huang X, EI-Sayed IH, Qian W, EI-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  3. Chen CC, Lin YP, Wang CW, Tzeng HC, Wu CH, Chen YC, Chen CP, Chen LC, Wu YC (2006) DNA-gold nanorod conjugates for remote control of localized gene exression by near infrared irradtion. J Am Chem Soc 128:3709–3715

    Article  CAS  Google Scholar 

  4. EI-Sayed IH, Huang X, EI-sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjuated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  Google Scholar 

  5. Chen CD, Cheng SF, Chau LK, Wang CRC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22:926–932

    Article  CAS  Google Scholar 

  6. Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79:5278–5283

    Article  CAS  Google Scholar 

  7. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, Chilkoti A (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80:984–989

    Article  CAS  Google Scholar 

  8. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2:687–692

    Article  CAS  Google Scholar 

  9. Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y (2010) LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 26:9130–9135

    Article  CAS  Google Scholar 

  10. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579

    Article  CAS  Google Scholar 

  11. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  12. Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Func Mater 19:189–200

    Article  CAS  Google Scholar 

  13. Félidj N, Laurent G, Aubard J, Lévi G, Hohenau A, Krenn JR, Aussenegg FR (2005) Grating-induced plasmon mode in gold nanoparticle arrays. J Chem Phys 123(221103):1–5

    Google Scholar 

  14. Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H (2006) Spectrally-resolved atomic-scale length variations of gold nanorods. J Am Chem Soc 128:14226–14227

    Article  CAS  Google Scholar 

  15. Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(143902):1–4

    Google Scholar 

  16. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(253116):1–3

    Google Scholar 

  17. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  18. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  19. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  20. Sekhon JS, Verma SS (2010) Optimal dimensions of gold nanorod for plamsonic nanosensors. Plasmonics. doi:10.1007/s11468-010-9182-3

  21. Otte MA, Sepúlveda B, Ni W, Juste JP, Liz-Marzán LM, Lechuga LM (2010) Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano 4:349–357

    Article  CAS  Google Scholar 

  22. Lévêque G, Martin OJF (2006) Tunable composite nanoparticle for plasmonics. Opt Lett 31:2750–2752

    Article  Google Scholar 

  23. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244–246

    Article  CAS  Google Scholar 

  24. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  25. Ye J, Shioi M, Lodewijks K, Lagae L, Kawamura T, Van Dorpe P (2010) Appl Phys Lett 97(163106):1–6

    Google Scholar 

  26. Hohenau A, Krenn JR (2010) Plasmonic modes of gold nano-particle arrays on thin gold films. Phys Status Solidi-Rapid Res Lett 4:25–258

    Article  Google Scholar 

  27. Le F, Lwin NZ, Steele JM, Käll M, Halas NJ, Nordlander P (2005) Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett 5:2009–2013

    Article  CAS  Google Scholar 

  28. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252

    Article  CAS  Google Scholar 

  29. Lide DR (ed) (2000) CRC handbook of chemistry and physics, 3rd electronic edn. CRC, Boca Raton

    Google Scholar 

  30. Ye J, Verellen N, Van Roy W, Lagae L, Maes G, Borghs G, Van Dorpe P (2010) Plasmonic modes of metallic semishells in a polymer film. ACS Nano 4:1457–1464

    Article  CAS  Google Scholar 

  31. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98(266802):1–4

    Google Scholar 

  32. Kim CH, Cheng X (2009) SERS-active substrate based on gap surface plasmon polaritons. Opt Express 17:17234–17241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jian Ye and Pol Van Dorpe acknowledge financial support from the F.W.O. of Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Van Dorpe, P. Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors. Plasmonics 6, 665–671 (2011). https://doi.org/10.1007/s11468-011-9249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9249-9

Keywords

Navigation