Skip to main content
Log in

Development in the application of laser-induced breakdown spectroscopy in recent years: A review

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been widely studied due to its unique advantages such as remote sensing, real-time multi-elemental detection and none-to-little damage. With the efforts of researchers around the world, LIBS has been developed by leaps and bounds. Moreover, in recent years, more and more Chinese LIBS researchers have put tremendous energy in promoting LIBS applications. It is worth mentioning that the application of LIBS in a specific field has its special application background and technical difficulties, therefore it may develop in different stages. A review summarizing the current development status of LIBS in various fields would be helpful for the development of LIBS technology as well as its applications especially for Chinese LIBS community since most of the researchers in this field work in application. In the present work, we summarized the research status and latest progress of main research groups in coal, metallurgy, and water, etc. Based on the current research status, the challenges and opportunities of LIBS were evaluated, and suggestions were made to further promote LIBS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. M. Guo, L. B. Guo, J. M. Li, H. D. Liu, Z. H. Zhu, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data, Front. Phys. 11(5), 114212 (2016)

    Article  ADS  Google Scholar 

  2. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. At. Spectrom. 19(9), 1061 (2004)

    Article  Google Scholar 

  3. B. Busser, S. Moncayo, J. L. Coll, L. Sancey, and V. Motto-Ros, Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications, Coord. Chem. Rev. 358, 70 (2018)

    Article  Google Scholar 

  4. M. Markiewicz-Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, and C. Sullivan, Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review, Trends Food Sci. Technol. 65, 80 (2017)

    Article  Google Scholar 

  5. J. Laserna, J. M. Vadillo and P. Purohit, Laser-induced breakdown spectroscopy (LIBS): Fast, effective, and agile leading edge analytical technology, Appl. Spectrosc. 72(Suppl. 1), 35 (2018)

    Article  Google Scholar 

  6. G. G. Arantes de Carvalho, M. B. Bueno Guerra, A. Adame, C. S. Nomura, P. V. Oliveira, H. W. Pereira de Carvalho, D. Santos, L. C. Nunes, and F. J. Krug, Recent advances in LIBS and XRF for the analysis of plants, J. Anal. At. Spectrom. 33(6), 919 (2018)

    Article  Google Scholar 

  7. M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno, Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62(1), 2841 (2018)

    Google Scholar 

  8. C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, and D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera laser induced breakdown spectroscopy instrument, Spectrochim. Acta B At. Spectrosc. 66(3–4), 280 (2011)

    Article  ADS  Google Scholar 

  9. L. Peret, O. Gasnault, R. Dingler, Y. Langevin, S. Bender, D. Blaney, S. Clegg, C. Clewans, D. Delapp, C. M. Donny, S. Johnstone, C. Little, E. Lorigny, R. McInroy, S. Maurice, N. Mittal, B. Pavri, R. Perez, R. C. Wiens and C. Yana, Restoration of the Autofocus capability of the ChemCam instrument onboard the Curiosity rover (2016)

  10. S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres, Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS), Talanta 158, 185 (2016)

    Article  Google Scholar 

  11. Y. G. Mbesse Kongbonga, H. Ghalila, M. B. Onana, and Z. Ben Lakhdar, Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS), Food Chem. 147, 327 (2014)

    Article  Google Scholar 

  12. E. C. Ferreira, E. J. Ferreira, P. R. Villas-Boas, G. S. Senesi, C. M. Carvalho, R. A. Romano, L. Martin-Neto, and D. M. B. P. Milori, Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 99, 76 (2014)

    Article  ADS  Google Scholar 

  13. C. K. Kim, J. H. In, S. H. Lee, and S. Jeong, Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis, Opt. Lett. 39(13), 3818 (2014)

    Article  ADS  Google Scholar 

  14. Y. W. Chu, S. S. Tang, S. X. Ma, Y. Y. Ma, Z. Q. Hao, Y. M. Guo, L. B. Guo, Y. F. Lu, and X. Y. Zeng, Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laser-induced breakdown spectroscopy, Opt. Express 26(8), 10119 (2018)

    Article  ADS  Google Scholar 

  15. Y. Chu, T. Chen, F. Chen, Y. Tang, S. Tang, H. Jin, L. Guo, Y. Lu, and X. Zeng, Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method, J. Anal. At. Spectrom. 33(12), 2083 (2018)

    Article  Google Scholar 

  16. R. Gaudiuso, M. Dell’Aglio, O. De Pascale, G. S. Senesi, and A. De Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)

    Article  ADS  Google Scholar 

  17. J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, L. Ye, and Y. He, Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review, TrAC Trends in Analytical Chemistry 85, 260 (2016)

    Article  Google Scholar 

  18. Y. T. Fu, W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)

    Article  ADS  Google Scholar 

  19. S. Sheta, M. S. Afgan, Z. Hou, S. C. Yao, L. Zhang, Z. Li, and Z. Wang, Coal analysis by laser-induced breakdown spectroscopy: A tutorial review, J. Anal. At. Spectrom. 34(6), 1047 (2019)

    Article  Google Scholar 

  20. T. Ctvrtnickova, M. P. Mateo, A. Yañez, and G. Nicolas, Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant, Spectrochim. Acta B At. Spectrosc. 65(8), 734 (2010)

    Article  ADS  Google Scholar 

  21. T. Ctvrtnickova, M. P. Mateo, A. Yanñez, and G. Nicolas, Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends, Appl. Surf. Sci. 257(12), 5447 (2011)

    Article  ADS  Google Scholar 

  22. M. P. Mateo, G. Nicolas, and A. Yanez, Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations, Appl. Surf. Sci. 254(4), 868 (2007)

    Article  ADS  Google Scholar 

  23. D. Redoglio, E. Golinelli, S. Musazzi, U. Perini, and F. Barberis, A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal, Spectrochim. Acta B At. Spectrosc. 116, 46 (2016)

    Article  ADS  Google Scholar 

  24. L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)

    Article  ADS  Google Scholar 

  25. T. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)

    Article  Google Scholar 

  26. T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)

    Article  Google Scholar 

  27. Z. Hou, Z. Wang, T. Yuan, J. Liu, Z. Li, and W. Ni, A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)

    Article  Google Scholar 

  28. J. Feng, Z. Wang, L. Li, Z. Li, and W. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)

    Article  ADS  Google Scholar 

  29. X. Li, H. Yin, Z. Wang, Y. Fu, Z. Li, and W. Ni, Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 111, 102 (2015)

    Article  ADS  Google Scholar 

  30. X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu, and W. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)

    Article  ADS  Google Scholar 

  31. X. Li, X. Mao, Z. Wang, and R. E. Russo, Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation, Plasma Sci. Technol. 17(11), 928 (2015)

    Article  ADS  Google Scholar 

  32. Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)

    Article  Google Scholar 

  33. Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)

    Article  Google Scholar 

  34. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc. 68, 58 (2012)

    Article  ADS  Google Scholar 

  35. J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)

    Article  Google Scholar 

  36. H. Qin, Z. Lu, S. Yao, Z. Li, and J. Lu, Combining laser-induced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties, J. Anal. At. Spectrom. 34(2), 347 (2019)

    Article  Google Scholar 

  37. S. Yao, J. Zhao, J. Xu, Z. Lu, and J. Lu, Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal, J. Anal. At. Spectrom. 32(4), 766 (2017)

    Article  Google Scholar 

  38. Z. Lu, J. Mo, S. Yao, J. Zhao, and J. Lu, Rapid determination of the gross calorific value of coal using laser-induced breakdown spectroscopy coupled with artificial neural networks and genetic algorithm, Energy Fuels 31(4), 3849 (2017)

    Article  Google Scholar 

  39. S. Yao, J. Mo, J. Zhao, Y. Li, X. Zhang, W. Lu, and Z. Lu, Development of a rapid coal analyzer using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 72(8), 1225 (2018)

    Article  ADS  Google Scholar 

  40. M. Dong, L. Wei, J. Lu, W. Li, S. Lu, S. Li, C. Liu, and J. H. Yoo, A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS, J. Anal. At. Spectrom. 34(3), 480 (2019)

    Article  Google Scholar 

  41. S. Li, M. Dong, F. Luo, W. Li, L. Wei, and J. Lu, Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy, Journal of the Energy Institute 93(1), 52 (2020)

    Article  Google Scholar 

  42. W. Li, M. Dong, S. Lu, S. Li, L. Wei, J. Huang, and J. Lu, Improved measurement of the calorific value of pulverized coal particle flow by laser-induced breakdown spectroscopy (LIBS), Anal. Methods 11(35), 4471 (2019)

    Article  Google Scholar 

  43. W. Li, J. Lu, M. Dong, S. Lu, J. Yu, S. Li, J. Huang, and J. Liu, Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS), Energy Fuels 32(1), 24 (2017)

    Article  Google Scholar 

  44. L. Zhang, L. Dong, H. Dou, W. Yin, and S. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)

    Article  ADS  Google Scholar 

  45. W. Yin, L. Zhang, L. Dong, W. Ma, and S. Jia, Design of a laser-induced breakdown spectroscopy system for online quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)

    Article  ADS  Google Scholar 

  46. L. Zhang, W. Ma, L. Dong, X. Yan, Z. Hu, Z. Li, Y. Zhang, L. Wang, W. Yin, and S. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)

    Article  ADS  Google Scholar 

  47. L. Zhang, Y. Gong, Y. Li, X. Wang, J. Fan, L. Dong, W. Ma, W. Yin, and S. Jia, Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 167 (2015)

    Article  ADS  Google Scholar 

  48. Y. Z. Liu, Z. H. Wang, Y. Lv, K. D. Wan, Y. He, J. Xia, and K. F. Cen, Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements, Fuel 212, 498 (2018)

    Article  Google Scholar 

  49. Y. Liu, Z. Wang, K. Wan, Y. Lv, J. Xia, Y. He, and K. Cen, In situ measurements of the release characteristics and catalytic effects of different chemical forms of sodium during combustion of Zhundong coal, Energy Fuels 32(6), 6595 (2018)

    Article  Google Scholar 

  50. T. Zhang, C. Yan, J. Qi, H. Tang, and H. Li, Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods, J. Anal. At. Spectrom. 32(10), 1960 (2017)

    Article  Google Scholar 

  51. C. Yan, J. Qi, J. Ma, H. Tang, T. Zhang, and H. Li, Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernel-based extreme learning machine, Chemom. Intell. Lab. Syst. 167, 226 (2017)

    Article  Google Scholar 

  52. C. Yan, J. Qi, J. Liang, T. Zhang, and H. Li, Determination of coal properties using laser-induced breakdown spectroscopy combined with kernel extreme learning machine and variable selection, J. Anal. At. Spectrom. 33(12), 2089 (2018)

    Article  Google Scholar 

  53. C. Yan, T. Zhang, Y. Sun, H. Tang, and H. Li, A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine, Spectrochim. Acta B At. Spectrosc. 154, 75 (2019)

    Article  ADS  Google Scholar 

  54. Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 87, 130 (2013)

    Article  ADS  Google Scholar 

  55. Z. Z. Wang, Y. Deguchi, S. Katsumori, A. Ikutomo, J. J. Yan, J. P. Liu, K. Tainaka, K. Tanno, H. Watanabe, and R. Kurose, Improved measurement characteristics of elemental compositions using laser-induced breakdown spectroscopy, Spectroscopy (Santa Monica) 31(1), 22 (2016)

    Google Scholar 

  56. Z. Wang, R. Liu, Y. Deguchi, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. Yan, and J. Liu, Detection improvement of unburned carbon content in fly ash flow using libs with a two-stage cyclone measurement system, Energy Fuels 33(8), 7805 (2019)

    Article  Google Scholar 

  57. R. W. Liu, Y. Deguchi, W. G. Nan, R. M. Hu, Z. Z. Wang, Y. Fujita, S. Tanaka, K. Tainaka, K. Tanno, H. Watanabe, J. P. Liu, and J. J. Yan, Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short nanosecond pulse width laser, Adv. Powder Technol. 30(6), 1210 (2019)

    Article  Google Scholar 

  58. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    Article  ADS  Google Scholar 

  59. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, 2007

  60. W. W. Wu, The concentration of silver from oxidative silver-manganese ore with united technologies of beneficiation and metallurgy, Nonferrous Metals (Mineral Processing) 5 (2003)

  61. F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)

    Article  ADS  Google Scholar 

  62. V. Lakshmanan, A. Ojaghi, and B. Gorain, Beneficiation of Gold and Silver Ores, in: Innovations and Breakthroughs in the Gold and Silver Industries, Springer, 2019

  63. M. Gaft, Laser-Induced Breakdown Spectroscopy (LIBS) for On-line Control in Mining Industry, in: Applied Industrial Optics: Spectroscopy, Imaging and Metrology, Optical Society of America, 2011

  64. D. H. Diaz Ordonez, Laser-induced breakdown spectroscopy (LIBS) for analysis of precious metals in minerals, 2017

  65. S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing, Metall. Mater. Trans. B 48(5), 2731 (2017)

    Article  Google Scholar 

  66. L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)

    Article  Google Scholar 

  67. Q. Zeng, C. Pan, C. Li, T. Fei, X. Ding, X. Du, and Q. Wang, Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 142, 68 (2018)

    Article  ADS  Google Scholar 

  68. Z. Qiang, P. Congyuan, F. Teng, D. Xiaokang, W. Shengbo, and W. Qiuping, Composition and temperature monitoring of molten metal by a combined LIBS-IR thermometry system, J. Appl. Spectrosc. 85(5), 817 (2018)

    Article  ADS  Google Scholar 

  69. L. X. Sun, H. B. Yu, Z. B. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, and Y. Li, Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochim. Acta B At. Spectrosc. 142, 29 (2018)

    Article  ADS  Google Scholar 

  70. L. M. Cabalin, T. Delgado, J. Ruiz, D. Mier, and J. J. Laserna, Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations, At-line monitoring of temporal evolution versus predicted mathematical model, Spectrochim. Acta B At. Spectrosc. 146, 93 (2018)

    Article  ADS  Google Scholar 

  71. J. Ruiz, T. Delgado, L. M. Cabal’in, and J. J. Laserna, At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 32(6), 1119 (2017)

    Article  Google Scholar 

  72. V. Sturm, C. Meinhardt, R. Fleige, C. Fricke-Begemann, and J. Eisbach, Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 136, 66 (2017)

    Article  ADS  Google Scholar 

  73. S. H. Gudmundsson, J. Matthiasson, B. M. Bjornsson, H. Gudmundsson, and K. Leosson, Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 158, 105646 (2019)

    Article  Google Scholar 

  74. J. Herbert, J. Fernandez, R. D. Saro, and J. Craparo, The Industrial Application of Molten Metal Analysis (LIBS), 2019

  75. O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, Atomic spectrometry update -a review of advances in environmental analysis, J. Anal. At. Spectrom. 32(1), 11 (2017)

    Article  Google Scholar 

  76. X. Yu, Y. Li, X. Gu, J. Bao, H. Yang, and L. Sun, Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: A review, Environ. Monit. Assess. 186(12), 8969 (2014)

    Article  Google Scholar 

  77. H. Tian, L. Jiao, and D. Dong, Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment, Sci. Rep. 9(1), 10443 (2019)

    Article  ADS  Google Scholar 

  78. J. Kang, R. Li, Y. Wang, Y. Chen, and Y. Yang, Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber, J. Anal. At. Spectrom. 32(11), 2292 (2017)

    Article  Google Scholar 

  79. N. K. Rai, A. K. Rai, A. Kumar, and S. N. Thakur, Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples, Appl. Opt. 47(31), G105 (2008)

    Article  Google Scholar 

  80. J. S. Huang, C. B. Ke, L. S. Huang, and K. C. Lin, The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets, Spectrochim. Acta B At. Spectrosc. 57(1), 35 (2002)

    Article  ADS  Google Scholar 

  81. F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 403(9), 2601 (2012)

    Article  Google Scholar 

  82. Z. Shilei, Z. Ronger, L. Yuan, C. Kai, and X. Junshan, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)

    Article  Google Scholar 

  83. D. Zhang, Z. Hu, Y. Su, B. Hai, X. Zhu, J. Zhu, and X. Ma, Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS), Opt. Express 26(14), 18794 (2018)

    Article  ADS  Google Scholar 

  84. X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, Simultaneous and sensitive analysis of Ag (I), Mn (II), and Cr (III) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent, J. Anal. At. Spectrom. 29(6), 1098 (2014)

    Article  Google Scholar 

  85. X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy, Anal. Chem. 87(11), 5577 (2015)

    Article  Google Scholar 

  86. X. Yang, Z. Hao, M. Shen, R. Yi, J. Li, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Talanta 163, 127 (2017)

    Article  Google Scholar 

  87. X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 24(12), 13410 (2016)

    Article  ADS  Google Scholar 

  88. X. Yang, R. Yi, X. Li, Z. Cui, Y. Lu, Z. Hao, J. Huang, Z. Zhou, G. Yao, and W. Huang, Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 26(23), 30456 (2018)

    Article  ADS  Google Scholar 

  89. S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy, Opt. Express 27(10), 15091 (2019)

    Article  ADS  Google Scholar 

  90. S. Ma, Y. Tang, Y. Ma, D. Dong, L. Guo, H. Zhu, J. Liu, and Y. Lu, The pH effect on the detection of heavy metals in wastewater by laser-induced breakdown spectroscopy coupled with a phase transformation method, J. Anal. At. Spectrom. 35(1), 198 (2020)

    Article  Google Scholar 

  91. S. Ma, Y. Tang, S. Zhang, Y. Ma, Z. Sheng, Z. Wang, L. Guo, J. Yao, and Y. Lu, Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy, Talanta 214, 120849 (2020)

    Article  Google Scholar 

  92. F. Ruiz, L. Ripoll, M. Hidalgo, and A. Canals, Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS), Talanta 191, 162 (2019)

    Article  Google Scholar 

  93. A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential, Anal. Chem. 87(3), 1655 (2015)

    Article  Google Scholar 

  94. L. Ripoll and M. Hidalgo, Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): A new method for trace elemental analysis of aqueous samples, J. Anal. At. Spectrom. 34(10), 2016 (2019)

    Article  Google Scholar 

  95. J. Cortez and C. Pasquini, Ring-oven based preconcentration technique for microanalysis: Simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy, Anal. Chem. 85(3), 1547 (2013)

    Article  Google Scholar 

  96. D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 113, 70 (2015)

    Article  ADS  Google Scholar 

  97. N. Aras, and Ş. Yalçn, Investigating silicon wafer based substrates for dried-droplet analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 152, 84 (2019)

    Article  ADS  Google Scholar 

  98. A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level, Anal. Chem. 88(10), 5251 (2016)

    Article  Google Scholar 

  99. V. N. Rai, F. Y. Yueh, and J. P. Singh, Study of laser-induced breakdown emission from liquid under double-pulse excitation, Appl. Opt. 42(12), 2094 (2003)

    Article  ADS  Google Scholar 

  100. K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 27(2), 276 (2012)

    Article  Google Scholar 

  101. Y. Wang, J. Kang, Y. Chen, and R. Li, Sensitive analysis of copper in water by LIBS-LIF assisted by simple sample pretreatment, J. Appl. Spectrosc. 86(2), 353 (2019)

    Article  ADS  Google Scholar 

  102. M. Wall, Z. Sun, and Z. T. Alwahabi, Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy, Opt. Express 24(2), 1507 (2016)

    Article  ADS  Google Scholar 

  103. R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors (Basel) 10(8), 7434 (2010)

    Article  ADS  Google Scholar 

  104. R. Kumar, A. Devanathan, N. Mishra and A. Rai, Quantification of heavy metal contamination in soil and plants near a leather tanning industrial area using Libs and TXRF, J. Appl. Spectrosc., 86(5), 840 (2019)

    Article  Google Scholar 

  105. R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method, Anal. Chem. 90(11), 7080 (2018)

    Article  Google Scholar 

  106. T. Wang, M. He, T. Shen, F. Liu, Y. He, X. Liu, and Z. Qiu, Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China, Spectrochim. Acta B At. Spectrosc. 149, 300 (2018)

    Article  ADS  Google Scholar 

  107. S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy, Results in Physics 15, 102736 (2019)

    Article  Google Scholar 

  108. Y. Ding, G. Xia, H. Ji, and X. Xiong, Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS), Anal. Methods 11(29), 3657 (2019)

    Article  Google Scholar 

  109. D. Meng, N. Zhao, M. Ma, L. Fang, Y. Gu, Y. Jia, J. Liu, and W. Liu, Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil, Appl. Opt. 56(18), 5204 (2017)

    Article  ADS  Google Scholar 

  110. M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. Baig, Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 148, 143 (2018)

    Article  ADS  Google Scholar 

  111. M. Akhtar, A. Jabbar, S. Mahmood, Z. A. Umar, R. Ahmed, and M. Aslam Baig, Analysis of soil by magnetic field assisted calibration-free laser induced breakdown spectroscopy (CF-LIBS) and laser ablation-time-of-flight mass spectrometry (LA-TOF-MS), Anal. Lett. 52(14), 2312 (2019)

    Article  Google Scholar 

  112. M. Akhtar, A. Jabbar, N. Ahmed, S. Mahmood, Z. Umar, R. Ahmed, and M. Baig, Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field, Appl. Phys. B 125(6), 110 (2019)

    Article  ADS  Google Scholar 

  113. G. Kim, J. Kwak, J. Choi, and K. Park, Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 60(3), 718 (2012)

    Article  Google Scholar 

  114. R. A. Multari, D. A. Cremers, T. Scott, and P. Kendrick, Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS), J. Agric. Food Chem. 61(10), 2348 (2013)

    Article  Google Scholar 

  115. D. Yang and Y. Ying, Applications of Raman spectroscopy in agricultural products and food analysis: A review, Appl. Spectrosc. Rev. 46(7), 539 (2011)

    Article  ADS  Google Scholar 

  116. L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review, Appl. Spectrosc. Rev. 48(2), 142 (2013)

    Article  ADS  Google Scholar 

  117. G. Nicolodelli, G. S. Senesi, A. C. Ranulfi, B. S. Marangoni, A. Watanabe, V. de Melo Benites, P. P. A. de Oliveira, P. Villas-Boas, and D. M. B. P. Milori, Doublepulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples, Microchem. J. 133, 272 (2017)

    Article  Google Scholar 

  118. S. Pandhija and A. K. Rai, Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS, Environ. Monit. Assess. 148(1–4), 437 (2009)

    Article  Google Scholar 

  119. C. Wang, L. Huang, M. Liu, P. Yang, T. Chen, H. Hu, W. Li, and M. Yao, Influence of water content on the detection of sensitivity of Pb in potatoes by LIBS, Acta Agriculturae Universitatis Jiangxiensis 38(2), 393 (2016)

    Google Scholar 

  120. C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Enhancement of Pb intensity in potatoes by microwave assisted LIBS, Chinese Journal of Analysis Laboratory 35(5), 506 (2016)

    Google Scholar 

  121. C. Wang, L. Huang, S. Hu, M. Liu, T. Chen, H. Yang, H. Hu, and M. Yao, Feasibility of predicting the distribution of Cu in Navel orange pulp by LIBS spectra of peel, Chinese Journal of Analysis Laboratory 35(3), 253 (2016)

    Google Scholar 

  122. W. B. Li, L. T. Yao, M. H. Liu, L. Huang, M. Y. Yao, T. B. Chen, X. W. He, P. Yang, H. Q. Hu, and J. H. Nie, Influence of spectral pre-processing on PLS quantitative model of detecting cu in navel orange by LIBS, Spectroscopy and Spectral Analysis 35(5), 1392 (2015)

    Google Scholar 

  123. W. B. Li, M. Y. Yao, L. Huang, T. B. Chen, J. H. Zheng, S. Q. Fan, M. H. Liu, X. W. He, J. L. Lin, and J. Y. Ouyang, Effect of characteristic variable extraction on accuracy of Cu in Navel orange peel by LIBS, Spectroscopy and Spectral Analysis 35(7), 2021 (2015)

    Google Scholar 

  124. C. H. Wang, L. Huang, T. B. Chen, M. H. Liu, H. Yang, H. Q. Hu, and M. Y. Yao, Feasibility of analyzing Cr in rice husk and coarse rice with LIBS, Spectroscopy and Spectral Analysis 37(11), 3590 (2017)

    Google Scholar 

  125. H. Yang, L. Huang, M. Liu, T. Chen, C. Wang, and M. Yao, Comparison of precision and accuracy in analyzing Cd in rice by LIBS combined with multivariate regression, Chinese Journal of Analysis Laboratory 36(4), 399 (2017)

    Google Scholar 

  126. C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Determination of heavy metal chromium in rice husk by LIBS coupled with SiPLS, Laser & Optoelectronics Progress 53(11), 113001 (2016)

    Google Scholar 

  127. C. Wang, L. Huang, M. Liu, T. Chen, H. Yang, and M. Yao, Comparison of accuracy in detecting Cr in pork by LIBS coupled with different characteristic lines, Chinese Journal of Analysis Laboratory 36(1), 32 (2017)

    Google Scholar 

  128. H. Yang, C. H. Wang, M. H. Liu, T. B. Chen, L. Huang, and M. Y. Yao, Improvement of LIBS accuracy in detecting Pb in pork by physical pretreatment of samples, Spectroscopy and Spectral Analysis 37(8), 2580 (2017)

    Google Scholar 

  129. G. F. Rao, L. Huang, M. H. Liu, T. B. Chen, J. Y. Chen, Z. Y. Luo, F. H. Xu, X. H. Xu, and M. Y. Yao, Identification of Huanglongbing-infected nave oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods, Appl. Opt. 57(29), 8738 (2018)

    Article  ADS  Google Scholar 

  130. J. Peng, Y. He, Z. Zhao, J. Jiang, F. Zhou, F. Liu and T. Shen, Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods, Environ. Pollut. 252(Pt B), 1125 (2019)

    Article  Google Scholar 

  131. J. Peng, Y. He, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laser-induced breakdown spectroscopy and chemometric methods, Food Chem. 295, 327 (2019)

    Article  Google Scholar 

  132. X. Liu, X. Feng, F. Liu, J. Peng, and Y. He, Rapid identification of genetically modified maize using laser-induced breakdown spectroscopy, Food Bioprocess Technol. 12(2), 347 (2018)

    Article  Google Scholar 

  133. T. Shen, W. Kong, F. Liu, Z. Chen, J. Yao, W. Wang, J. Peng, H. Chen, and Y. He, Rapid determination of cadmium contamination in lettuce using laser-induced breakdown spectroscopy, Molecules 23(11), 2930 (2018)

    Article  Google Scholar 

  134. F. Liu, T. Shen, W. Kong, J. Peng, C. Zhang, K. Song, W. Wang, C. Zhang, and Y. He, Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics, Front. Plant Sci. 9, 1316 (2018)

    Article  Google Scholar 

  135. J. Peng, W. Xie, J. Jiang, Z. Zhao, F. Zhou, and F. Liu, Fast quantification of honey adulteration with laser-induced breakdown spectroscopy and chemometric methods, Foods 9(3), 341 (2020)

    Article  Google Scholar 

  136. Z. Zhao, L. Chen, F. Liu, F. Zhou, J. Peng, and M. Sun, Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis, Sensors (Basel) 20(7), 1878 (2020)

    Article  ADS  Google Scholar 

  137. F. Liu, F. Liu, T. Shen, J. Wang, Y. He, C. Zhang, W. Zhou, T. Shen, J. Wang, Y. He, C. Zhang, and W. Zhou, Detection of sclerotinia stem rot on oilseed rape (Brassica napus L.) based on laser-induced breakdown spectroscopy, Trans. ASABE 62(1), 123 (2019)

    Article  Google Scholar 

  138. J. Peng, Y. He, L. Ye, T. Shen, F. Liu, W. Kong, X. Liu, and Y. Zhao, Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: A case study for chromium content detection in rice leaves, Anal. Chem. 89(14), 7593 (2017)

    Article  Google Scholar 

  139. P. Yang, Y. Zhu, X. Yang, J. Li, S. Tang, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, Evaluation of sample preparation methods for rice geographic origin classification using laser-induced breakdown spectroscopy, J. Cereal Sci. 80, 111 (2018)

    Article  Google Scholar 

  140. P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy, Food Chem. 272, 323 (2019)

    Article  Google Scholar 

  141. Y. Zhao, Q. Wang, X. Cui, G. Teng, K. Wei, and H. Liu, Discrimination of hazardous bacteria with combination laser-induced breakdown spectroscopy and statistical methods, Appl. Opt. 59(5), 1329 (2020)

    Article  ADS  Google Scholar 

  142. Y. Du, Q. Wang, Y. Zhao, X. Cui, and Z. Peng, Rapid qualitative evaluation of velvet antler using laser-induced breakdown spectroscopy (LIBS), Laser Phys. 29(9), 095602 (2019)

    Article  ADS  Google Scholar 

  143. J. Singh, R. Kumar, S. Awasthi, V. Singh, and A. K. Rai, Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds, Food Chem. 221, 1778 (2017)

    Article  Google Scholar 

  144. B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, and I. H. Boyaci, Identification of milk fraud using laser-induced breakdown spectroscopy (LIBS), Int. Dairy J. 81, 1 (2018)

    Article  Google Scholar 

  145. T. V. Silva, S. Z. Hubinger, J. A. Gomes Neto, D. M. B. P. Milori, E. J. Ferreira, and E. C. Ferreira, Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee, Spectrochim. Acta B At. Spectrosc. 135, 29 (2017)

    Article  ADS  Google Scholar 

  146. B. B. S. Jaswal and V. K. Singh, Analytical assessments of gallstones and urinary stones: A comprehensive review of the development from laser to LIBS, Appl. Spectrosc. Rev. 50(6), 473 (2015)

    Article  ADS  Google Scholar 

  147. G. L. Cote, V. K. Unnikrishnan, R. Nayak, S. Bhat, S. Mathew, V. B. Kartha and C. Santhosh, Biomedical applications of laser-induced breakdown spectroscopy (LIBS), Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933211 (2015)

  148. R. Grassi, E. Grifoni, S. Gufoni, S. Legnaioli, G. Lorenzetti, N. Macro, L. Menichetti, S. Pagnotta, F. Poggialini, C. Schiavo, and V. Palleschi, Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique, Spectrochim. Acta B At. Spectrosc. 127, 1 (2017)

    Article  ADS  Google Scholar 

  149. T. R. Loree, The detection of elements in biomedical fluids by laser-induced breakdown spectroscopy, doi: https://doi.org/10.2351/1.5057553 (1983)

  150. V. Singh, V. Kumar, J. Sharma, Y. Khajuria, and K. Kumar, Importance of laser induced breakdown spectroscopy for biomedical applications: A comprehensive review, Materials Focus 3(3), 169 (2014)

    Article  Google Scholar 

  151. S. J. Rehse, H. Salimnia, and A. W. Miziolek, Laser-induced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications, J. Med. Eng. Technol. 36(2), 77 (2012)

    Article  Google Scholar 

  152. Y. Markushin, N. Melikechi, A. Marcano O., S. Rock, E. Henderson, and D. Connolly, LIBS-based multi-element coded assay for ovarian cancer application, in: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications, International Society for Optics and Photonics, 2009, p. 719015

  153. Q. Wang, W. Xiangli, G. Teng, X. Cui, and K. Wei, A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues: Pathological diagnosis and physiological detection, Appl. Spectrosc. Rev. 1 (2020)

  154. Y. Chu, Z. Zhang, Q. He, F. Chen, Z. Sheng, D. Zhang, H. Jin, F. Jiang, and L. Guo, Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy, J. Adv. Res. 24, 353 (2020)

    Article  Google Scholar 

  155. X. Chen, X. Li, X. Yu, D. Chen, and A. Liu, Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods, Spectrochim. Acta B At. Spectrosc. 139, 63 (2018)

    Article  ADS  Google Scholar 

  156. X. Chen, X. Li, S. Yang, X. Yu, and A. Liu, Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples, Biomed. Opt. Express 9(3), 1057 (2018)

    Article  Google Scholar 

  157. X. Li, X. An, R. Fan, X. Yu, and D. Chen, Classification of soft tissues using laser-induced breakdown spectroscopy, SPIE Proceedings Novel Biophotonics Techniques and Applications IV, 2017, p. 1041303

  158. X. Li, S. Yang, R. Fan, X. Yu, and D. Chen, Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers, Opt. Laser Technol. 102, 233 (2018)

    Article  ADS  Google Scholar 

  159. X. Li, S. Yang, X. Chen, G. Yao, A. Liu, and X. Yu, Multi-elemental imaging of breast cancer tissues using laser-induced breakdown spectroscopy. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2019

  160. G. Teng, Q. Wang, H. Zhang, W. Xiangli, H. Yang, X. Qi, X. Cui, B. S. Idrees, K. Wei, and M. N. Khan, Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 165, 105787 (2020)

    Article  Google Scholar 

  161. Q. Wang, G. Teng, X. Qiao, Y. Zhao, J. Kong, L. Dong, and X. Cui, Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria, Biomed. Opt. Express 9(11), 5837 (2018)

    Article  Google Scholar 

  162. Y. Moon, J. H. Han, J. H. Choi, S. Shin, Y. C. Kim, and S. Jeong, Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy, J. Biomed. Opt. 24(3), 1 (2018)

    Article  Google Scholar 

  163. J. J. Lee, Y. Moon, J. H. Han, and S. Jeong, Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy, J. Biophoton. 10(4), 523 (2017)

    Article  Google Scholar 

  164. S. Moncayo, F. Trichard, B. Busser, M. Sabatier-Vincent, F. Pelascini, N. Pinel, I. Templier, J. Charles, L. Sancey, and V. Motto-Ros, Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 133, 40 (2017)

    Article  ADS  Google Scholar 

  165. B. Busser, S. Moncayo, F. Trichard, V. Bonneterre, N. Pinel, F. Pelascini, P. Dugourd, J. L. Coll, M. D’Incan, J. Charles, V. Motto-Ros, and L. Sancey, Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy, Mod. Pathol. 31(3), 378 (2018)

    Article  Google Scholar 

  166. F. J. Fortes, S. Guirado, A. Metzinger, and J. J. Laserna, A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean, J. Anal. At. Spectrom. 30(5), 1050 (2015)

    Article  Google Scholar 

  167. M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, C. M. Gordon, and S. M. Angel, Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure, Spectrochim. Acta B At. Spectrosc. 99, 172 (2014)

    Article  ADS  Google Scholar 

  168. N. Idris, M. Ramli, R. Hedwig, Z. S. Lie, and K. H. Kurniawan, Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS), AIP Conference Proceedings 1719, 030051 (2016)

    Article  Google Scholar 

  169. P. Pease, and V. Tchakerian, Source provenance of carbonate grains in the Wahiba Sand Sea, Oman, using a new LIBS method, Aeolian Res. 15, 203 (2014)

    Article  ADS  Google Scholar 

  170. J. Song, J. Guo, Y. Tian, Y. Lu, and R. Zheng, Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies, Proceedings Volume 10461, AOPC 2017: Optical Spectroscopy and Imaging 78 (2017)

  171. Y. Tian, B. Xue, J. Song, Y. Lu, Y. Li, and R. Zheng, Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers, Appl. Phys. Express 10(7), 072401 (2017)

    Article  ADS  Google Scholar 

  172. B. Xue, N. Li, Y. Lu, Y. Li, and R. Zheng, Emission enhancement of underwater collinear dual-pulse laser-induced breakdown spectroscopy with the second pulse defocused, Appl. Phys. Lett. 110(10), 101102 (2017)

    Article  ADS  Google Scholar 

  173. J. Song, J. Guo, Y. Tian, B. Xue, Y. Lu, and R. Zheng, Investigation of laser-induced plasma characteristics in bulk water under different focusing arrangements, Appl. Opt. 57(7), 1640 (2018)

    Article  ADS  Google Scholar 

  174. J. Guo, A. S. Mahmoud, N. Li, J. Song, and R. Zheng, Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21(3), 034022 (2019)

    Article  ADS  Google Scholar 

  175. N. Li, J. Guo, C. Zhang, Y. Zhang, Q. Li, Y. Tian, and R. Zheng, Salinity effects on elemental analysis in bulk water by laser-induced breakdown spectroscopy, Appl. Opt. 58(14), 3886 (2019)

    Article  ADS  Google Scholar 

  176. N. Li, J. Guo, L. Zhu, Y. Lu, Y. Tian, and R. Zheng, Effects of ambient temperature on laser-induced plasma in bulk water, Appl. Spectrosc. 73(11), 1277 (2019)

    Google Scholar 

  177. B. Xue, Y. Tian, Y. Lu, Y. Li, and R. Zheng, Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies, Spectrochim. Acta B At. Spectrosc. 151, 20 (2019)

    Article  ADS  Google Scholar 

  178. Q. Li, Y. Tian, B. Xue, N. Li, W. Ye, Y. Lu, and R. Zheng, Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information, J. Anal. At. Spectrom. 35(2), 366 (2020)

    Article  Google Scholar 

  179. J. Guo, Y. Lu, K. Cheng, J. Song, W. Ye, N. Li, and R. Zheng, Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials, Appl. Opt. 56(29), 8196 (2017)

    Article  ADS  Google Scholar 

  180. W. Ye, J. Guo, N. Li, F. Qi, K. Cheng, and R. Zheng, Depth profiling investigation of seawater using combined multi-optical spectrometry, Appl. Spectrosc. 74(5), 563 (2020)

    Article  ADS  Google Scholar 

  181. S. Guirado, F. J. Fortes, V. Lazic, and J. J. Laserna, Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea, Spectrochim. Acta B At. Spectrosc. 74–75, 137 (2012)

    Article  ADS  Google Scholar 

  182. S. Guirado, F. J. Fortes, and J. Javier Laserna, Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system, Talanta 137, 182 (2015)

    Article  Google Scholar 

  183. B. Thornton, T. Sakka, T. Takahashi, A. Tamura, A. Matsumoto, and T. Ura, Laser-induced breakdown spectroscopy for in situ chemical analysis at sea, in: 2013 IEEE International Underwater Technology Symposium, 2013

  184. B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)

    Article  ADS  Google Scholar 

  185. T. Takahashi, S. Yoshino, Y. Takaya, T. Nozaki, K. Ohki, T. Ohki, T. Sakka, and B. Thornton, Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 158, 103232 (2020)

    Article  Google Scholar 

  186. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics, J. Anal. At. Spectrom. 26(3), 536 (2011)

    Article  Google Scholar 

  187. A. Sarkar, V. M. Telmore, D. Alamelu, and S. K. Ag-garwal, Laser induced breakdown spectroscopic quantification of platinum group metals in simulated high level nuclear waste, J. Anal. At. Spectrom. 24(11), 1545 (2009)

    Article  Google Scholar 

  188. B. Bhatt, K. Hudson Angeyo, and A. Dehayem-Kamadjeu, LIBS development methodology for forensic nuclear materials analysis, Anal. Methods 10(7), 791 (2018)

    Article  Google Scholar 

  189. D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer, Appl. Spectrosc. 66(3), 250 (2012)

    Article  ADS  Google Scholar 

  190. S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITER-like plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)

    Article  ADS  Google Scholar 

  191. C. Li, C. L. Feng, H. Y. Oderji, G. N. Luo, and H. B. Ding, Review of LIBS application in nuclear fusion technology, Front. Phys. 11(6), 114214 (2016)

    Article  ADS  Google Scholar 

  192. Y. Qiu, J. Wu, X. Li, T. Liu, F. Xue, Z. Yang, Z. Zhang, and H. Yu, Parametric study of fiber-optic laser-induced breakdown spectroscopy for elemental analysis of Z3CN20-09M steel from nuclear power plants, Spectrochim. Acta B At. Spectrosc. 149, 48 (2018)

    Article  ADS  Google Scholar 

  193. J. Wu, H. Yu, Y. Qiu, Z. Zhang, T. Liu, F. Xue, W. Yu, X. Li, and A. Qiu, X. Li and A. Qiu: Plasma characteristics and element analysis of steels from a nuclear power plant based on fiber-optic laser-induced breakdown spectroscopy, J. Phys. D Appl. Phys. 52(1), 014006 (2019)

    Article  ADS  Google Scholar 

  194. L. Cai, Z. Wang, C. Li, X. Huang, D. Zhao, and H. Ding, Development of an in situ diagnostic system for mapping the deposition distribution on plasma facing components of the HL-2M tokamak, Rev. Sci. Instrum. 90(5), 053503 (2019)

    Article  ADS  Google Scholar 

  195. Z. Hu, C. Li, Q. Xiao, P. Liu, F. Ding, H. Mao, J. Wu, D. Zhao, H. Ding, and G. N. Luo, Preliminary results ofin situlaser-induced breakdown spectroscopy for the first wall diagnostics on EAST, Plasma Sci. Technol. 19(2), 025502 (2017)

    Article  ADS  Google Scholar 

  196. D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak, Rev. Sci. Instrum. 89(7), 073501 (2018)

    Article  ADS  Google Scholar 

  197. Z. Hu, N. Gierse, C. Li, J. Oelmann, D. Zhao, M. Tokar, X. Jiang, D. Nicolai, J. Wu, F. Ding, S. Brezinsek, H. Ding, G. N. Luo, and C. Linsmeier, Laser induced ablation spectroscopy for in situ characterization of the first wall on EAST tokamak, Fusion Eng. Des. 135, 95 (2018)

    Article  Google Scholar 

  198. M. Imran, L. Y. Sun, P. Liu, H. Sattar, D. Zhao, Z. Mu, and H. Ding, Depth profiling of tungsten coating layer on CuCrZr alloy using LIBS approach, Surf. Interface Anal. 51(2), 210 (2019)

    Article  Google Scholar 

  199. P. Liu, D. Wu, L. Y. Sun, D. Y. Zhao, R. Hai, C. Li, H. Ding, Z. H. Hu, L. Wang, J. S. Hu, J. L. Chen, and G. N. Luo, Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak, Fusion Eng. Des. 118, 98 (2017)

    Article  Google Scholar 

  200. J. Liu, D. Wu, C. Fu, R. Hai, X. Yu, L. Sun, and H. Ding, Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments, Plasma Sci. Technol. 21(3), 034017 (2019)

    Article  ADS  Google Scholar 

  201. C. Li, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, C. P. Dhard, T. S. Pedersen, R. Konig, Y. F. Liang, H. B. Ding, C. Linsmeier and the W7-X team, Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis, Phys. Scr. T 170, 5 (2017)

    Google Scholar 

  202. R. Hai, L. Sun, D. Wu, Z. He, H. Sattar, J. Liu, W. Tong, C. Li, C. Feng, and H. Ding, Enhanced laser-induced breakdown spectroscopy using the combination of circular and annular laser pulses, J. Anal. At. Spectrom. 34(10), 1982 (2019)

    Article  Google Scholar 

  203. S. Harilal, C. Murzyn, M. Phillips, and J. B. Martin, Hyperfine structures and isotopic shifts of uranium transitions using tunable laser spectroscopy of laser ablation plumes, Spectrochim. Acta B At. Spectrosc. 169, 105828 (2020)

    Article  Google Scholar 

  204. E. J. Kautz, P. J. Skrodzki, M. Burger, B. E. Bernacki, I. Jovanovic, M. C. Phillips, and S. S. Harilal, Time-resolved imaging of atoms and molecules in laser-produced uranium plasmas, J. Anal. At. Spectrom. 34(11), 2236 (2019)

    Article  Google Scholar 

  205. S. Harilal, P. Diwakar, N. LaHaye, and M. Phillips, Spatio-temporal evolution of uranium emission in laser-produced plasmas, Spectrochim. Acta B At. Spectrosc. 111, 1 (2015)

    Article  ADS  Google Scholar 

  206. M. C. Phillips, B. E. Brumfield, N. LaHaye, S. S. Harilal, K. C. Hartig, and I. Jovanovic, Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes, Sci. Rep. 7(1), 1 (2017)

    Article  Google Scholar 

  207. J. Song, G. C. Y. Chan, X. Mao, J. D. Woodward, R. W. III Smithwick, T. G. Schaaff, A. C. Stowe, C. D. Harris, R. Zheng, V. Zorba, and R. E. Russo, Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 150, 67 (2018)

    Article  ADS  Google Scholar 

  208. X. Mao, G. C. Y. Chan, I. Choi, V. Zorba, and R. E. Russo, Combination of atomic lines and molecular bands for uranium optical isotopic analysis in laser induced plasma spectrometry, J. Radioanal. Nucl. Chem. 312(1), 121 (2017)

    Article  Google Scholar 

  209. S. Maji, S. Kumar, K. Sundararajan, and K. Sankaran, Feasibility study for quantification of lanthanides in LiF-KCl salt by laser induced breakdown spectroscopy, J. Radioanal. Nucl. Chem. 314(2), 1279 (2017)

    Article  Google Scholar 

  210. J. Oelmann, N. Gierse, C. Li, S. Brezinsek, M. Zlobinski, B. Turan, S. Haas, and C. Linsmeier, Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 144, 38 (2018)

    Article  ADS  Google Scholar 

  211. D. Zhao, R. Yi, J. Oelmann, S. Brezinsek, M. Rasinski, Y. Gao, M. Mayer, C. Dhard, and M. Krause, Ex situ analysis of W7-X divertor plasma-facing components by picosecond laser diagnostics, Phys. Scr. 2020(T171), 014018 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61575073) and Huazhong University of Science and Technology (No. 2020kfyX-GYJ105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Wang  (王哲).

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1007-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LB., Zhang, D., Sun, LX. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys. 16, 22500 (2021). https://doi.org/10.1007/s11467-020-1007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1007-z

Keywords

Navigation