Skip to main content
Log in

Entanglement measures of a new type pseudo-pure state in accelerated frames

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity \({N_{A{B_I}}}\left( {\rho _{A{B_I}}^{{T_A}}} \right)\) increases with F but decreases with the variable y, while the variation of the negativity \({N_{{B_I}{B_{II}}}}\left( {\rho _{{B_I}{B_{II}}}^{{T_{{B_I}}}}} \right)\) is opposite to that of the negativity \({N_{A{B_I}}}\left( {\rho _{A{B_I}}^{{T_A}}} \right)\). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII ) is independent of it. However, both S(ρABI) and S(ρBIBII ) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)

    Article  ADS  Google Scholar 

  2. A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)

    Article  ADS  Google Scholar 

  6. K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)

    Article  ADS  Google Scholar 

  7. Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)

    Article  ADS  Google Scholar 

  9. J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)

    Article  ADS  Google Scholar 

  10. M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)

    Article  ADS  Google Scholar 

  11. Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)

    Article  ADS  Google Scholar 

  12. S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)

    Article  ADS  Google Scholar 

  13. S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)

    Article  Google Scholar 

  14. D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)

    Article  ADS  Google Scholar 

  15. E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)

    Article  ADS  Google Scholar 

  16. I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)

    Google Scholar 

  19. S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  22. W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)

  23. R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205, 415, 441

    Book  Google Scholar 

  24. W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)

    Article  ADS  Google Scholar 

  25. S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)

    Article  Google Scholar 

  26. S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)

    Article  ADS  Google Scholar 

  27. Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the kind referees for invaluable and positive suggestions, which have improved the manuscript greatly. This work was supported by project 20180677- SIP-IPN, COFAA-IPN, Mexico and partially by the CONACYT project under Grant No. 288856-CB-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Torres-Arenas, A.J., Sun, GH. et al. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14, 21603 (2019). https://doi.org/10.1007/s11467-018-0876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0876-x

Keywords

Navigation