Skip to main content
Log in

Construction and initial analysis of five Fosmid libraries of mitochondrial genomes of cotton (Gossypium)

  • Article
  • Crop Genetics
  • Published:
Chinese Science Bulletin

Abstract

Cotton (Gossypium) is an important crop providing textile fiber and edible oil. To gain the insights into mechanism of the cytoplasmic male sterility (CMS) inheritance, we constructed five fosmid libraries of mitochondrial genomes from mitotype of G. harknessii Brandegee. (one CMS line and its restorer), mitotype of G. hirsutum L. (one CMS line and its maintainer), and G. barbadense L. The numbers of the clones in these libraries ranged from 1152 to 2016 with an average insert size of 36.2 to 38.4 kb, equivalent to 70–119.3 mitogenomes. The libraries were screened with 28 markers derived from the conservative sequences and yielded 22, 19, 26, 21, and 23 positive clones, respectively. These positive clones were used to construct the physical map of G. harknessii Brandegee. CMS line and G. barbadense L. mitogenomes that shared six syntenis regions. A total of 30 genes in nine clusters showed conservative and had high similarity with those in the mitochondrial genomes of cotton, Carica papaya, Cucurbita pepo and Nicotiana tabacum. Further investigation indicated that gene rrn26 had two copies in all five cotton mitogenomes, while genes atp1, rrn5 and rrn18 had two copies only in G. barbadense L. The positive clones and physical map are considered being useful resources in cotton genomics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kubo T, Newton K J. Angiosperm mitochondrial genomes and mutations. Mitochondrion, 2008, 8: 5–14

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y C, Feng Y, Chen X M. Complete sequence and gene organization of the mitochondrial genome of Batocera lineolata Chevrolat (Coleoptera: Cerambycidae). Chin Sci Bull, 2012, 57: 3578–3585

    Article  CAS  Google Scholar 

  3. Ward B L, Anderson R S, Bendich A J. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell, 1981, 25: 793–803

    Article  CAS  PubMed  Google Scholar 

  4. Alverson A J, Wei X X, Rice D W, et al. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Bio Evol, 2010, 27: 1436–1448

    Article  CAS  Google Scholar 

  5. Kubo T, Mikami T. Organization and variation of angiosperm mitochondrial genome. Physiol Plant, 2007, 129: 6–13

    Article  CAS  Google Scholar 

  6. Chen J M, Guan R Z, Chang S X, et al. Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One, 2011, 6: e17662

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clifton S W, Minx P, Fauron C M R, et al. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol, 2004, 136: 3486–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oda K, Yamato K, Ohta E, et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: A primitive form of plant mitochondrial genome. J Mol Biol, 1992, 223: 1–7

    Article  CAS  PubMed  Google Scholar 

  9. Unseld M, Marienfeld J R, Brandt P, et al. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366924 nucleotides. Nat Genet, 1997, 15: 57–61

    Article  CAS  PubMed  Google Scholar 

  10. Kubo T, Nishizawa S, Sugawara A, et al. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA (Cys) (GCA). Nucleic Acids Res, 2000, 28: 2571–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): Comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res, 2003, 31: 5907–5916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sugiyama Y, Watase Y, Nagase M, et al. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: Comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics, 2005, 272: 603–615

    Article  CAS  PubMed  Google Scholar 

  13. Tian X J, Jing Z, Hu S N, et al. The rice mitochondrial genomes and their variations. Plant Physiol, 2006, 140: 401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: Frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics, 2002, 268: 434–445

    Article  CAS  PubMed  Google Scholar 

  15. Ogihara Y, Yamazaki Y, Murai K, et al. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res, 2005, 33: 6235–6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaw S M, Shih A C C, Wang D, et al. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Bio Evol, 2008, 25: 603–615

    Article  CAS  Google Scholar 

  17. Kim C G, Fujiyama A, Saitou N. Construction of a gorilla Fosmid library and its PCR screening system. Genomics, 2003, 82: 571–574

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L L, Bao Z M, Cheng J, et al. Fosmid library construction and initial analysis of end sequences in Zhikong scallop (Chlamys farreri). Mar Biotechnol, 2007, 9: 606–612

    Article  CAS  PubMed  Google Scholar 

  19. Li P B, Li Z H, Liu H H, et al. Cytoplasmic diversity of the cotton genus as revealed by chloroplast microsatellite markers. Genet Resour Crop Evol, 2013, doi: 10.1007/s10722-013-0018-9

    Google Scholar 

  20. Yi P, Wang L, Sun Q P, et al. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice. Chin Sci Bull, 2002, 47: 744–747

    Article  Google Scholar 

  21. Carlsson J, Glimelius K. Cytoplasmic male-sterility and nuclear encoded fertility restoration. Plant Mitochondria, 2011, 1: 469–491

    Article  Google Scholar 

  22. Feng N, Luo S P, Guo S D. The method of preparing mitochondrial DNA based on BAC library of cotton (in Chinese). J Xinjiang Agri Univ, 2006, 3: 50–52

    Google Scholar 

  23. Meyer V G. Male sterility from Gossypium harknessii. J Heredity, 1975, 66, 1: 23–27

    Article  Google Scholar 

  24. Lei B B, Li S S, Liu G Z, et al. Evolution of mitochondrial gene content: Loss of genes, tRNAs and introns between Gossypium harknessii and other plants. Plant Syst Evol, 2013, doi: 10.1007/s00606-013-0845-3

    Google Scholar 

  25. Tang Q, Li W Q, Zhang G S. Establishment of the simple extraction method of wheat mitochondrial DNA (in Chinese). J Triticeae Crops, 2005, 25: 144–147

    Google Scholar 

  26. Li W Q, Zhang G S, Wang K, et al. An efficient method for isolation of mitochondrial DNA in wheat. J Genet Genomics, 2007, 29: 771–775

    CAS  Google Scholar 

  27. Xu G W, Cui Y X, Schertz K, et al. Isolation of mitochondrial DNA sequences that distinguish male-sterility-inducing cytoplasms in Sorghum bicolor (L.) Moench. Theor Appl Genet, 1995, 90: 1180–1187

    Article  CAS  PubMed  Google Scholar 

  28. Cheng Y J, Guo W W, Yi H L, et al. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177–178

    Article  Google Scholar 

  29. Triboush S O, Danilenko D N, Davydenko O G. A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol Biol Rep, 1998, 19: 67a–69h

    Google Scholar 

  30. Hsu C L, Mullin B C. A new protocol for isolation of mitochondrial DNA from cotton seedlings. Plant Cell Rep, 1988, 7: 356–360

    Article  CAS  PubMed  Google Scholar 

  31. Kim U J, Shizuya H, de Jong P J, et al. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res, 1992, 20: 1083–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hsu C L, Mullin B C. Physical characterization of mitochondrial DNA from cotton. Plant Mol Biol, 1989, 13: 467–468

    Article  CAS  PubMed  Google Scholar 

  33. Hazle T, Bonen L. Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants. Mol Biol Evol, 2007, 24: 1101–1112

    Article  CAS  PubMed  Google Scholar 

  34. Adams K L, Palmer J D. Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. Mol Phylogenet Evol, 2003, 29: 380–395

    Article  CAS  PubMed  Google Scholar 

  35. Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wang K B, Wang Z W, Li F G, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinPing Hua.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

About this article

Cite this article

Li, S., Liu, G., Chen, Z. et al. Construction and initial analysis of five Fosmid libraries of mitochondrial genomes of cotton (Gossypium). Chin. Sci. Bull. 58, 4608–4615 (2013). https://doi.org/10.1007/s11434-013-5962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-5962-4

Keywords

Navigation