Skip to main content
Log in

Light emission properties of sapphire under shock loading in the stress range of 40–120 GPa

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The measurement of emissions from the window material of sapphire was performed through multi-wavelength pyrometer and spontaneous spectroscopic techniques in the pressure range of 40–120 GPa. The results showed that the spectral distribution with wavelength clearly fit well with the grey-body spectrum. We have analyzed the emissions and discovered they mostly came from the shear banding, which is a typical thermal radiation. The radiance intensity changing linearly with time revealed it was a volume effect. All of the data from pyrometer can be explained by the model of Boslough’s study, especially for pressures over megabar. The color temperature of shocked sapphire changing with increased stress disagrees with the computed melt curve which is likely explained by the different phase structures of sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kobayashi T, Sekine T, Li X, et al. Observation of wavelength shifts in ruby under shock compression to 36 GPa by time-resolved luminescence spectroscopy. Phys Rev B, 2004, 69: 054108

    Article  ADS  Google Scholar 

  2. Gaudry E, Kiratisin A, Sainctavit P, et al. Structural and electronic relaxations around substitutional Cr3+ and Fe3+ ions in corundum. Phys Rev B, 2003, 67: 094108

    Article  ADS  Google Scholar 

  3. Jones S C, Robinson M, Gupta Y M. Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis. J Appl Phys, 2003, 93: 1023–1031

    Article  ADS  Google Scholar 

  4. Jones S C, Vaughan B A M, Gupta Y M. Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis. J Appl Phys, 2001, 90: 4990–4996

    Article  ADS  Google Scholar 

  5. Barker L M, Hollenbach R. Shock-wave studies of PMMA, fused silica, and sapphire. J Appl Phys, 1970, 41: 4208–4226

    Article  ADS  Google Scholar 

  6. Graham R A, Brooks W P. Shock-wave compression of sapphire from 15 to 420 kbar: The effects of large anisotropic compressions. J Phys Chem Sol, 1971, 32: 2311–2330

    Article  ADS  Google Scholar 

  7. Urtiew P A. Effect of shock loading on transparency of sapphire crystals. J Appl Phys, 1974, 45: 3490–3493

    Article  ADS  Google Scholar 

  8. McQueen R G, Isaak D G. Characterizing windows for shock wave radiation studies. J Geophys Res, 1990, 95: 21753–21765

    Article  ADS  Google Scholar 

  9. Yoo C S. Shock-induced optical changes in Al2O3 at 200 GPa: Implications for shock temperature measurements in metals. In: Holmes N C, See E, Schmidt S C, et al., eds. Shock Compression of Condensed Matter. Amsterdam: North-Holland, 1991. 733–736

    Google Scholar 

  10. Kondo K I. Window problem and complementary method for shock—temperature measurements of iron. In: Schmidt S C, Shaner J W, Samara G A, et al., eds. High-Pressure Science and Technology, 1993. New York: AIP Press, 1994. 1555–1558

    Google Scholar 

  11. Partouche-Sebban D, Pélissier J L, Anderson W W, et al. Emissivity and temperature measurements under shock loading, along the melting curve of bismuth. Physica B, 2005, 364: 1–13

    Article  ADS  Google Scholar 

  12. Hare D E, Holmes N C, Webb D J. Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: Images and spectra. Phys Rev B, 2002, 66: 014108

    Article  ADS  Google Scholar 

  13. Wang Z, Mao H, Saxena S K. The melting of corundum (Al2O3) under high pressure conditions. J Alloys Compd, 2000, 299: 287–291

    Article  Google Scholar 

  14. Kanel G L, Nellis W J, Savinykh A S, et al. Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. J Appl Phys, 2009, 106: 043524

    Article  ADS  Google Scholar 

  15. Kwiatkowski C S. Optical measurements to probe inelastic deformation in shocked brittle materials. In: Gupta Y M, Furnish M D, Chhabildas L C, et al., eds. Shock Compression of Condensed Matter, 1999. Melville: AIP Press, 2000. 641–645

    Google Scholar 

  16. Jing F Q. Introduction to Experimental Equation of State (in Chinese). Beijing: Science Press, 1999. 204–209

    Google Scholar 

  17. Shi S C, Chen P S, Huang Y. Velocity measrement of magnet induced system for projectile. Chin J High Press Phys, 1991, 5: 205–214

    Google Scholar 

  18. Mitchell A C, Nellis W J. Shock compression of aluminum, copper, and tantalum. J Appl Phys, 1981, 52: 3363–3374

    Article  ADS  Google Scholar 

  19. Marsh S P. LASL Shock Hugoniot Data. Berkeley: University of California Press, 1980. 260–263

    Google Scholar 

  20. Window B, Harding G. Thermal emissivity of copper. J Opt Soc Am, 1981, 71: 354–357

    Article  ADS  Google Scholar 

  21. Billings B H. American Institute of Physics Handbook. 3rd. New York: AIP Press, 1972. 6–79

    Google Scholar 

  22. Boslough M B. A model for time dependence in shock—induced thermal radiation of light. J Appl Phys, 1985, 58: 3394–3399

    Article  ADS  Google Scholar 

  23. Grady E. Properties of an adiabatic shear-band process zone. J Mech Phys Solids, 1992, 40: 1197–1215

    Article  ADS  Google Scholar 

  24. Shen G, Lazor P. Measurement of melting temperatures of some minerals under lower mantle pressures. J Geophys Res, 1995, 100: 17699–17713

    Article  ADS  Google Scholar 

  25. Caracas R, Cohen R E. Prediction of a new phase transition in Al2O3 at high pressures. Geophys Res Lett, 2005, 32: 10828–10831

    Google Scholar 

  26. Mashimo T, Tsumoto K, Nakamura K, et al. High-pressure phase transformation of corundum ( α-Al2O3) observed under shock compression. Geophys Res Lett, 2000, 27: 2021–2024

    Article  ADS  Google Scholar 

  27. Ono S, Oganov A R, Koyama T, et al. Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth Planet Sci Lett, 2006, 246: 326–335

    Article  ADS  Google Scholar 

  28. Schmitt D R, Ahrens T J, Svendsen B. Shock-induced melting and shear banding in single-crystal NaCl. J Appl Phys, 1988, 63: 99–106

    Article  ADS  Google Scholar 

  29. Lin J F, Degtyareva O, Prewitt C T, et al. Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nat Mater, 2004, 3: 389–393

    Article  ADS  Google Scholar 

  30. Hao G Y, Liu F S, Zhang D Y, et al. Optical emission of directly contacted copper/sapphire interface under shock compression of megabar. Appl Phys Lett, 2007, 90: 261914

    Article  ADS  Google Scholar 

  31. Zhang D Y, Liu F S, Hao G Y, et al. Shock induced emission from sapphire in high-pressure phase of Rh2O3(II) structure. Chin Phys Lett, 2007, 24: 2341–2344

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuSheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Liu, F., Peng, X. et al. Light emission properties of sapphire under shock loading in the stress range of 40–120 GPa. Sci. China Phys. Mech. Astron. 56, 562–567 (2013). https://doi.org/10.1007/s11433-013-5034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5034-4

Keywords

Navigation