Skip to main content
Log in

Modeling on effervescent atomization: A review

  • Review
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

study and modeling process of effervescent atomization are reviewed. The mechanism of droplet events and the treatment of liquid fragmentation process and dispersed particles are systematically presented, which includes the primary atomization of Newtonian and non-Newtonian fluid, instability analysis, turbulence treatment, particle tracking, secondary atomization and droplets collision. The review on the sub-models involved in the simulation of effervescence is followed by a summary of the achievements of modeling. First is the validation of models; then the parametric study is summarized; the third part introduces the fitting formula of droplet mean size and impinging factors, and finally the scope of future study is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALR:

air-to-liquid ratio, by mass

C D :

drag coefficient

D noz :

nozzle diameter, m

d d :

the droplet diameter, m

e :

internal energy, J

F :

force, N

g :

gravity force, N

k :

turbulent kinetic energy per unit mass

k bu :

breakup frequency, s−1

k ω :

wave number

:

mass flow rate, kg/s

m :

mass, kg

p :

pressure kg s2/m

Q :

heat source, J

q :

heat flux vector

r :

droplet radius, m

Re :

Reynolds number

Sr :

nterface velocity slip ratio

SMD:

Sauter mean diameter, m

U rel :

relative velocity vector, m/s

u, v, w :

velocity, m/s

x :

radial coordinate, m

y :

axial coordinate, m

α :

volume fraction of gas

ζ :

deformation parameter

μ :

dynamic viscosity, kg/ms

ρ :

density, kg/m3

σ :

surface tension, kg/m2

δ :

thickness sheet, m

ϑ :

growth rate

ɛ :

viscous dissipation rate, J/ms

χ :

distance between the center of one drop and U rel, m

ω :

drop oscillation frequency, /s

ϖ :

viscous shear stress tensor

cr:

criteria

g:

gas

l:

liquid

o:

orifice

p:

particle

s:

sheet

1:

small droplet

2:

large droplet

References

  1. Villermaux E. Fragmentation. Annu Rev Fluid Mech, 2007, 39: 419–446

    Article  MathSciNet  ADS  Google Scholar 

  2. Lasheras J C, Hopfinger E J. Liquid jet instability and atomization in a coaxial gas stream. Annu Rev Fluid Mech, 2000, 32: 275–308

    Article  ADS  Google Scholar 

  3. Han T Y, Zhao Z B, Gillispie B A, et al. Effects of spray conditions on coating formation by the kinetic spray process. J Thermal Spray Tech, 2005, 14: 373–383

    Article  ADS  Google Scholar 

  4. Lefebvre A H. Atomization and Sprays. New York: Hemisphere Publication, 1989

    Google Scholar 

  5. Lefebvre A H. A novel method of atomization with potential gas turbine application. Indian Defence Sci J, 1988, 38: 353–362

    ADS  Google Scholar 

  6. Wang X F, Chin J S, Lefebvre A H. Influence of gas injector geometry on atomization performance of aerated-liquid nozzles. Int J Turbo Jet Engines, 1989, 6: 271–280

    Article  ADS  Google Scholar 

  7. Chin J S, Lefebvre A H. A design procedure for effervescent atomizers. ASME J Engng Gas Turbines Power, 1995, 117: 226–271

    Google Scholar 

  8. Lawler A, Wade R A, Sojka P E, et al. Flame length and pollutant emission characteristics of effervescent atomizer/burner stabilized jet flames, combustion fundamentals and applications. In: Proceedings of the Technical Meeting of the Central States Section of the Combustion Institute, 1996

  9. Wade R A, Weerts J M, Sojka P E, et al. Effervescent atomization at injection pressures in MPa range. Atomization Sprays, 1999, 9: 651–667

    Google Scholar 

  10. Sankar S V, Robart D M, Bachalo W D. Swirl Effervescent Atomizer for Spray Combustion. ASME HTD, 1995. 175–182

  11. Loebker D, Empie H J. High mass low-rate effervescent spraying of high viscosity Newtonian liquid. In: Proceedings of the 10th Annual conference on the liquid atomization and sprays systems, Ottawa, 1997. 253–257

  12. Panchagnula M V, Sojka P E. Spatial droplet velocity and size profiles in effervescent atomizer-produced sprays. Fuel, 1999, 78: 729–741

    Article  Google Scholar 

  13. Sovani S D, Sojka P E, Lefebvre A H. Effervescent atomization. Prog Energy Combust Sci, 2001, 27: 483–521

    Article  Google Scholar 

  14. Sutherland J J, Sojka P E, Plesniak M W. Ligament-controlled effervescent atomization. Atomization Sprays, 1997, 7: 383–406

    Google Scholar 

  15. Sutherland J J, Sojka P E, Plesniak M W. Entrainment by ligament-controlled effervescent atomizer-produced sprays. Int J Multiphase Flow, 1997, 23: 865–84

    Article  MATH  Google Scholar 

  16. Lund M T, Sojka P E, Lefebvre A H, et al. Effervescent atomization at low mass flow rates. Part 1: The influence of surface tension. Atomization Sprays, 1993, 3: 77–89

    Google Scholar 

  17. Petersen F J, Worts O, Schafer T, et al. Effervescent atomization of aqueous polymer solution and dispersions. Pharm Dev Tech, 2001, 6: 201–210

    Article  Google Scholar 

  18. Nielsen A F, Bertelsen P, Kristensen H G, et al. Investigation and comparison of performance of effervescent and standard pneumatic atomizer intended for soluble aqueous coating. Pharm Dev Tech, 2006, 11: 243–253

    Article  Google Scholar 

  19. Esfarjani S A, Dolatabadi A. A 3D simulation of two-phase flow in an effervescent atomizer for suspension plasma spray. Surf Coatings Tech, 2009, 203: 2074–2080

    Article  Google Scholar 

  20. Chen S K, Lefebvre A H. Spray cone angles of effervescent atomizers. Atomization Sprays, 1994, 4: 291–301

    Google Scholar 

  21. Whitlow J D, Lefebvre A H. Effervescent atomizer operation and spray characteristics. Atomization Sprays, 1993, 3: 137–156

    Google Scholar 

  22. Chen S K, Lefebvre A H, Rollbuhler J R. Influence of ambient air pressure on effervescent atomization. J Propuls Power, 1993, 9: 10–15

    Article  ADS  Google Scholar 

  23. Buckner H E, Sojka P E. Effervescent atomization of high viscosity fluids, Part 2: Non-Newtonian liquids. Atomization Sprays, 1993, 3: 157–170

    Google Scholar 

  24. Liu L S. Experimental and theoretical investigation on the characteristics and two-phase spray flow field of effervescent atomizers. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2001

    Google Scholar 

  25. Liu L S, Fu M L, Wu J X. The distribution of SMD downstream the discharge orifices of effervescent atomizers. J Eng Thermophys, 2001, 22: 653–656

    Google Scholar 

  26. Liu L S, Wu J X, Han Z X, et al. Studies of effervescent atomization at different physical properties of spray fluid. J Thermal Sci Tech, 2002, 2: 128–132

    Google Scholar 

  27. Xiong H B, Lin J Z, Zhu Z F. Three-dimensional simulation of effervescent atomization spray. Atomization Sprays, 2009, 19: 1–16

    Article  Google Scholar 

  28. Qian L J, Xiong H B, Lin J Z. Effects of liquid properties on drop mean diameter in effervescent atomization spray. J Eng Thermophys, 2008, 29: 246–250

    Google Scholar 

  29. Qian L J, Xiong H B, Lin J Z. The simulation of droplet size distribution in turbulence atomization jet. J Eng Thermophys, 2007, 28: 251–254

    Google Scholar 

  30. Qian L J, Lin J Z, Xiong H B. Modeling of non-Newtonian suspension plasma spraying in an inductively coupled plasma torch. Int J Thermal Sci, 2011, 50: 1417–1427

    Article  Google Scholar 

  31. Qian L J, Lin J Z, Xiong H B, et al. Theoretical investigation of the influence of liquid physical properties on effervescent atomization performance. ASME J Fluids Eng, in Press

  32. Qian L J, Lin J Z, Xiong H B. Simulation of droplet-gas flow in the effervescent atomization spray with an impinging plate. Chin J Chem Eng, 2009, 17: 8–19

    Article  Google Scholar 

  33. Lin J Z, Qian L J, Xiong H B, et al. Effects of operating conditions on droplet deposition onto surface of atomization impinging spray. Surf Coatings Tech, 2009, 203: 1733–1740

    Article  Google Scholar 

  34. Qian L J, Lin J Z, Xiong H B. A Fitting formula for predicting droplet mean diameter for various liquid in effervescent atomization spray. J Thermal Spray Tech, 2010, 19: 586–601

    Article  ADS  Google Scholar 

  35. Lin J Z, Qian L J, Xiong H B. Relationship between deposition properties and operating parameters for droplet onto surface in the atomization impinging spray. Powd Tech, 2009, 191: 340–348

    Article  Google Scholar 

  36. Qian L J. Research on the particle movements and heat transfer in the atomization spray. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010

    Google Scholar 

  37. Qian L J, Lin J Z, Xiong H B. Numerical modeling in radio frequency suspension plasma spray of Zirconia powders. Plasma Chem Plasma Process, 2010, 30: 733–760

    Article  Google Scholar 

  38. Amsden A A, O’Rourke P J, Butler T D. KIVAII: A computer program for chemically reactive flows with sprays. Los Alamos Natl. Lab Tech. Rep. LA-11560-MS., 1980

  39. Gorokhovski M, Herrmann M. Modeling primary atomization. Annu Rev Fluid Mech, 2008, 40: 343–366

    Article  MathSciNet  ADS  Google Scholar 

  40. Marmottant P, Villermaux E. On spray formation. J Fluid Mech, 2004, 498: 73–112

    Article  ADS  MATH  Google Scholar 

  41. Ishii M. One dimensional drift-flux mode and constitutive equations for relative motion between phases in various two-phase flow regimes. Argonne National Laboratory Report, 1977. 47–77

  42. Sirignano W A, Mehring C. Review of theory of distortion and disintegration of liquid streams. Prog Energy Combust Sci, 2000, 26: 609–655

    Article  Google Scholar 

  43. Rayleigh L. On the stability of liquid jets. Proc London Math Soc, 187810: 4–13

    Article  Google Scholar 

  44. Weber C. Disintegration of liquid jets. Z Angew Math Mech, 1931, 11: 136–159

    Article  MATH  Google Scholar 

  45. Levich V G. Physicochemical Hydrodynamics. Prentice Hall: New Jersey, 1962. 639–646

    Google Scholar 

  46. Sterling A M, Sleicher C A. The instability of capillary jets. J Fluid Mech, 1975, 68: 477–495

    Article  ADS  MATH  Google Scholar 

  47. Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet. Phys Fluids, 1982, 25: 1730–1742

    Article  ADS  MATH  Google Scholar 

  48. Li X, Tankin R S. On the temporal instability of a two-dimensional viscous liquid sheet. J Fluid Mech, 1991, 226: 425–443

    Article  ADS  MATH  Google Scholar 

  49. Senecal P K, Schmidt D P, Nouar I, et al. Modeling high-speed viscous liquid sheet atomization. Int J Multiphase Flow, 1999, 25: 1073–1097

    Article  MATH  Google Scholar 

  50. Goren S L, Gorttlieb M. Surface-tension driven breakup of viscoelastic liquid threads. J Fluid Mech, 1982, 120: 245–266

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Joseph D D, Beavers G E, Funda T. Rayleigh-Taylor instability of viscoelastic drops at high Weber number. J Fluid Mech, 2002, 453: 109–132

    Article  ADS  MATH  Google Scholar 

  52. Apte S V, Gorokhovski M A, Moin P. LES of atomizing spray with stochastic modeling of secondary breakup. Int J Multiphase Flow, 2003, 29: 1503–1522

    Article  MATH  Google Scholar 

  53. Wan Y P, Prasad V, Wang G X, et al. Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes. J Heat Transfer, 1999, 121: 691–699

    Article  Google Scholar 

  54. Tanner F X. Liquid jet atomization and droplet breakup modeling of nonevaporating diesel fuel sprays. SAE Trans J Engines, 106, 1998, 3: 127–140

    Google Scholar 

  55. Tanner F X. Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. Atomization Sprays, 2002, 14: 211–242

    Article  Google Scholar 

  56. Ibrahim E A, Yang H Q, Przekwas A J. Modeling of spray droplets deformation and breakup. J Propuls Power, 1993, 9: 651–654

    Article  ADS  Google Scholar 

  57. Reitz R D. Modeling atomization processes in high-pressure vaporizing sprays. Atomization Spray Tech, 1987, 3: 309–337

    ADS  Google Scholar 

  58. Brazier-Smith P, Jennings S, Latham J. The interaction of falling rain drops: Coalescence. Proc R Soc London A, 1972, 326: 393–408

    Article  ADS  Google Scholar 

  59. Ashgriz N, Poo J Y. Coalescence and separation in binary collisions of liquid drops. J Fluid Mech, 1990, 221: 183–204

    Article  ADS  Google Scholar 

  60. Estrade J P, Carentz H, Lavergne G, et al. Experimental investigation of dynamic binary collision of thanol droplets-a model for droplet coalescence and bouncing. Int J Heat Fluid Flow, 1999, 20: 486–491

    Article  Google Scholar 

  61. Ko G H, Ryou H S. Droplet collision processes in an inter-spray impingement system. J Aerosol Sci, 2005, 36: 1300–1321

    Article  Google Scholar 

  62. Baydar E, Ozmen Y. An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers. Appl Therm Eng, 2005, 25: 409–421

    Article  Google Scholar 

  63. Geckler S C, Sojka P E. Effervescent atomization of viscoelastic liquids: Experiments and modeling. J Fluids Eng, 2008, 130: 061303

    Article  Google Scholar 

  64. Bai C, Gosman A D. Development of methodology for spray impingement simulation. SAE paper, 950283, 1995

  65. Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int J Multiphase Flow, 1995, 21: 151–173

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianZhong Lin.

Additional information

Recommended by Fu Song (Editorial Board Member)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Lin, J. Modeling on effervescent atomization: A review. Sci. China Phys. Mech. Astron. 54, 2109–2129 (2011). https://doi.org/10.1007/s11433-011-4536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4536-1

Keywords

Navigation