Skip to main content
Log in

Eccentricity modulation of a close-in planet by a companion: Application to GJ 436 system

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

GJ 436b is a Neptune-size planet with 23.2 Earth masses in an elliptical orbit of period 2.64 days and eccentricity 0.16. With a typical tidal dissipation factor (Q′∼106) as that of a giant planet with convective envelope, its orbital circularization timescale under internal tidal dissipation is around 1 Ga, at least two times less than the stellar age (> 3 Ga). A plausible mechanism is that the eccentricity of GJ 436b is modulated by a planetary companion due to their mutual perturbation. Here we investigate this possibility from the dynamical viewpoint. A general method is given to predict the possible locations of the dynamically coupled companions, including nearby/distance non-resonant or mean motion resonance orbits with the first planet. Applying the method to GJ 436 system, we find it is very unlikely that the eccentricity of GJ 436b is maintained at the present location by a nearby/distance companion through secular perturbation or mean motion resonance. In fact, in all these simulated cases, GJ 436b will undergo eccentricity damp and orbital decay, leaving the present location within the stellar age. However, these results do not rule out the possible existence of planet companions in nearby/distance orbits, although they are not able to maintain the eccentricity of GJ 436b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolszczan A, Frail D A. A planetary system around the millisecond pulsar PSR1257+12. Nature, 1992, 355: 145–147

    Article  ADS  Google Scholar 

  2. Mayor M, Queloz D. A Jupiter-mass companion to a Solar-type star. Nature, 1995, 378: 355–359

    Article  ADS  Google Scholar 

  3. Udry S, Santos N C. Statistical properties of exoplanets. Annu Rev Astron Astrophys, 2007, 45: 397–439

    Article  ADS  Google Scholar 

  4. Bennett D P, Bond I A, Udalski A, et al. A low-mass planet with a possible sub-stellar-mass host in microlensing event MOA-2007-BLG-192. Astrophys J, 2008, 684: 663–683

    Article  ADS  Google Scholar 

  5. Butler R P, Vogt S S, Marcy G W, et al. A Neptune-mass planet orbiting the nearby M dwarf GJ 436. Astrophys J, 2004, 617: 580–588

    Article  ADS  Google Scholar 

  6. Maness H L, Marcy G W, Ford E B, et al. The M dwarf GJ 436 and its Neptune-mass planet. Publ Astron Soc Pac, 2007, 119: 90–101

    Article  ADS  Google Scholar 

  7. Gillon M, Demory B O, Barman T, et al. Accurate spitzer infrared radius measurement for the hot Neptune GJ 436b. Astron Astrophys, 2007, 471: L51–L54

    Article  ADS  Google Scholar 

  8. Gillon M, Pont F, Demory B O, et al. Detection of transits of the nearby hot Neptune GJ 436b. Astron Astrophys, 2007, 472: L13–L16

    Article  ADS  Google Scholar 

  9. Deming D, Harrington J, Laughlin G, et al. Spitzer transit and secondary eclipse photometry of GJ 436b. Astrophys J, 2007, 667: L199–L202

    Article  ADS  Google Scholar 

  10. Demory B O, Gillon M, Barman T, et al. Characterization of the hot Neptune GJ 436b with spitzer and ground-based observations. Astron Astrophys, 2007, 475: 1125–1129

    Article  ADS  Google Scholar 

  11. Torres G. The transiting exoplanet host star GJ 436: A test of stellar evolution models in the lower main sequence, and revised planetary parameters. Astrophys J, 2007, 671: L65–L68

    Article  ADS  MathSciNet  Google Scholar 

  12. Bean J L, Benedict G F, Charbonneau D, et al. A Hubble space telescope transit light curve for GJ 436b. Astron Astrophys, 2008, 486: 1039–1046

    Article  ADS  Google Scholar 

  13. Shporer A, Mazeh T, Winn J N, et al. Photometric follow-up observations of the transiting Neptune-mass planet GJ 436b. 2008, arXiv: 0805.3915

  14. Ribas I, Font-Ribera A, Beaulieu J P. A ∼ 5M super-earth orbiting GJ 436? The power of near-grazing transits. Astrophys J, 2008, 677: L59–L62

    Article  ADS  Google Scholar 

  15. Mardling R A. On the long-term tidal evolution of GJ 436b in the presence of a resonant companion. 2008, arXiv: 0805.1928

  16. Coughlin J L, Stringfellow G S, Becker A C, et al. New observations and a possible detection of parameter variations in the transits of Gliese 436b. 2008, arXiv: 0809.1664

  17. Marcy G W, Butler R P. Detection of extrasolar giant planets. Annu Rev Astron Astrophy, 1998, 36: 57–98

    Article  ADS  Google Scholar 

  18. Marchal C, Bozis G. Hill stability and distance curves for the general three-body problem. Cele Mech, 1982, 26: 311–333

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gladman B. Dynamics of systems of two close planets. Icarus, 1993, 106: 247–263

    Article  Google Scholar 

  20. Goldreich P, Soter S. Q in the solar system. Icarus, 1966, 5: 375–389

    Article  ADS  Google Scholar 

  21. Murray C D, Dermott S F. Solar System Dynamics. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  22. Eggleton P P, Kiseleva L G, Hut P. The equilibrium tide model for tidal friction. Astrophys J, 1998, 499: 853–870

    Article  ADS  Google Scholar 

  23. Mardling R A, Lin D N C. Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. Astrophys J, 2002, 573: 829–844

    Article  ADS  Google Scholar 

  24. Dobbs-Dixon I, Lin D N C, Mardling R A. Spin-orbit evolution of short-period planets. Astrophys J, 2004, 610: 464–476

    Article  ADS  Google Scholar 

  25. Zhou J L, Lin D N C. Migration and final location of hot super earths in the presence of gas giants. In: Sun Y-S, Ferraz-Mello S, Zhou J-L, eds. Proc of IAU Symp 249: Exoplanets: Detection, Formation and Dynamics. Cambridge: Cambridge University Press, 2008. 285–291

    Google Scholar 

  26. Mardling R A. Long-term tidal evolution of short-period planets with companions. Mon Not Roy Astron Soc, 2007, 382: 1768–1790

    ADS  Google Scholar 

  27. Beauge C, Michtchenko T A. Modelling the high-eccentricity planetary three-body problem. Application to the GJ876 planetary system. Mon Not Roy Astron Soc, 2003, 341: 760–770

    Article  ADS  Google Scholar 

  28. Laskar J. NATO Advanced Study Institute on Predictability, Stability, and Chaos in N-Body Dynamical Systems. Roy A E, ed. New York: Plenum Press, 1991, 93–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiLin Zhou.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10833001 and 10778603) and the National Basic Research Program of China (Grant No. 2007CB4800)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X., Zhou, J. Eccentricity modulation of a close-in planet by a companion: Application to GJ 436 system. Sci. China Ser. G-Phys. Mech. Astron. 52, 640–648 (2009). https://doi.org/10.1007/s11433-009-0070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0070-9

Keywords

Navigation