Skip to main content
Log in

Graphene-based vertical thin film transistors

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Vertical field effect transistors (VFETs), where the channel material is sandwiched between source-drain electrodes and the channel length is simply determined by its body thickness, have attracted considerable interest for high performance electronics owning to their intrinsic short channel length. To enable the effective gate modulation and current switching behavior, the electrode of conventional VFET is largely based on perforated metals, in which the gate electrical field could penetrate through. Recently, with the emerge of graphene, a new type of graphene based VFETs has been developed. With finite density of states and the weak electrostatic screening effect, graphene exhibits a field-tunable work-function and partial electrostatic transparency, it can thus function as an “active” contact with tunable graphene-channel junction, enabling entirely new transistor functions or higher device performance not previously possible. In this review, we discuss the research progresses of graphene-based VFET, including the its basic device structure, carrier transport mechanism, device performance and novel properties demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu B, Abbas A, Zhou C W. Two-dimensional semiconductors: from materials preparation to electronic applications. Adv Electron Mater, 2017, 3: 1700045

    Google Scholar 

  2. del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479: 317–323

    Google Scholar 

  3. Franklin A D. Nanomaterials in transistors: from high-performance to thin-film applications. Science, 2015, 349: aab2750

    Google Scholar 

  4. Zhu H, Shin E S, Liu A, et al. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv Funct Mater, 2020, 30: 1904588

    Google Scholar 

  5. Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14: 99–117

    Google Scholar 

  6. Newman C R, Frisbie C D, da Silva Filho D A, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater, 2004, 16: 4436–4451

    Google Scholar 

  7. Jena D, Banerjee K, Xing G H. 2D crystal semiconductors: intimate contacts. Nat Mater, 2014, 13: 1076–1078

    Google Scholar 

  8. Duan X, Wang C, Pan A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev, 2015, 44: 8859–8876

    Google Scholar 

  9. Hu X, Krull P, de Graff B, et al. Stretchable inorganic-semiconductor electronic systems. Adv Mater, 2011, 23: 2933–2936

    Google Scholar 

  10. Ferain I, Colinge C A, Colinge J P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature, 2011, 479: 310–316

    Google Scholar 

  11. Schaller R R. Moore’s law: past, present and future. IEEE Spectr, 1997, 34: 52–59

    Google Scholar 

  12. Cao W, Kang J, Sarkar D, et al. 2D semiconductor FETs-projections and design for sub-10 nm VLSI. IEEE Trans Electron Dev, 2015, 62: 3459–3469

    Google Scholar 

  13. Thompson S E, Parthasarathy S. Moore’s law: the future of Si microelectronics. Mater Today, 2006, 9: 20–25

    Google Scholar 

  14. Lundstrom M. Moore’s Law Forever? Science, 2003, 299: 210–211

    Google Scholar 

  15. Taur Y. CMOS design near the limit of scaling. IBM J Res Dev, 2002, 46: 213–222

    Google Scholar 

  16. Ieong M, Doris B, Kedzierski J, et al. Silicon device scaling to the sub-10-nm regime. Science, 2004, 306: 2057–2060

    Google Scholar 

  17. Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12: 758–762

    Google Scholar 

  18. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    Google Scholar 

  19. Liu Y, Duan X, Huang Y, et al. Two-dimensional transistors beyond graphene and TMDCs. Chem Soc Rev, 2018, 47: 6388–6409

    Google Scholar 

  20. Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 1–17

    Google Scholar 

  21. Dennard R H, Gaensslen F H, Yu H N, et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circ, 1974, 9: 256–268

    Google Scholar 

  22. Yudasaka I, Ohshima H. Rapid thermal annealing technique for polycrystalline silicon thin-film transistors. Jpn J Appl Phys, 1994, 33: 1256–1260

    Google Scholar 

  23. Street R A. Thin-film transistors. Adv Mater, 2009, 21: 2007–2022

    Google Scholar 

  24. Kuo Y. Thin film transistor technology–past, present, and future. Interface Mag, 2013, 22: 55–61

    Google Scholar 

  25. Ben-Sasson A J, Tessler N. Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode. Nano Lett, 2012, 12: 4729–4733

    Google Scholar 

  26. Liu Y, Guo J, Zhu E, et al. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano, 2019, 13: 847–854

    Google Scholar 

  27. Shin Y S, Lee K, Kim Y R, et al. Mobility engineering in vertical field effect transistors based on van der Waals heterostructures. Adv Mater, 2018, 30: 1704435

    Google Scholar 

  28. Pan C, Fu Y, Wang J, et al. Analog circuit applications based on ambipolar graphene/MeTe2 vertical transistors. Adv Electron Mater, 2018, 4: 1700662

    Google Scholar 

  29. Horri A, Faez R, Pourfath M, et al. A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure. J Appl Phys, 2017, 121: 214503

    Google Scholar 

  30. Yu H, Dong Z, Guo J, et al. Vertical organic field-effect transistors for integrated optoelectronic applications. ACS Appl Mater Interfaces, 2016, 8: 10430–10435

    Google Scholar 

  31. Song X, Zhang Y, Zhang H, et al. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor. Nanotechnology, 2016, 27: 405201

    Google Scholar 

  32. Liu Y, Sheng J, Wu H, et al. High-current-density vertical-tunneling transistors from graphene/highly doped silicon heterostructures. Adv Mater, 2016, 28: 4120–4125

    Google Scholar 

  33. Choi Y, Kang J, Jariwala D, et al. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv Mater, 2016, 28: 3742–3748

    Google Scholar 

  34. Liu Y, Zhou H, Weiss N O, et al. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano, 2015, 9: 11102–11108

    Google Scholar 

  35. Kim K, Lee T H, Santos E J G, et al. Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 2015, 9: 5922–5928

    Google Scholar 

  36. Hlaing H, Kim C H, Carta F, et al. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Nano Lett, 2015, 15: 69–74

    Google Scholar 

  37. Das T, Jang H, Lee J B, et al. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures. 2D Mater, 2015, 2: 044006

    Google Scholar 

  38. Moriya R, Yamaguchi T, Inoue Y, et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl Phys Lett, 2014, 105: 083119

    Google Scholar 

  39. He D, Zhang Y, Wu Q, et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat Commun, 2014, 5: 5162

    Google Scholar 

  40. Yu W J, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech, 2013, 8: 952–958

    Google Scholar 

  41. Yu W J, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246–252

    Google Scholar 

  42. Heo J, Byun K E, Lee J, et al. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett, 2013, 13: 5967–5971

    Google Scholar 

  43. Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotech, 2013, 8: 100–103

    Google Scholar 

  44. Ben-Sasson A J, Ankonina G, Greenman M, et al. Low-temperature molecular vapor deposition of ultrathin metal oxide dielectric for low-voltage vertical organic field effect transistors. ACS Appl Mater Interfaces, 2013, 5: 2462–2468

    Google Scholar 

  45. Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012, 336: 1140–1143

    Google Scholar 

  46. Lemaitre M G, Donoghue E P, McCarthy M A, et al. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors. ACS Nano, 2012, 6: 9095–9102

    Google Scholar 

  47. Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335: 947–950

    Google Scholar 

  48. Uno M, Nakayama K, Soeda J, et al. High-speed flexible organic field-effect transistors with a 3D structure. Adv Mater, 2011, 23: 3047–3051

    Google Scholar 

  49. McCarthy M A, Liu B, Rinzler A G. High current, low voltage carbon nanotube enabled vertical organic field effect transistors. Nano Lett, 2010, 10: 3467–3472

    Google Scholar 

  50. Ben-Sasson A J, Avnon E, Ploshnik E, et al. Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl Phys Lett, 2009, 95: 213301

    Google Scholar 

  51. Shih C J, Pfattner R, Chiu Y C, et al. Partially-screened field effect and selective carrier injection at organic semiconductor/graphene heterointerface. Nano Lett, 2015, 15: 7587–7595

    Google Scholar 

  52. Kudo K, Iizuka M, Kuniyoshi S, et al. Device characteristics of lateral and vertical type organic field effect transistors. Thin Solid Films, 2001, 393: 362–367

    Google Scholar 

  53. Fujimoto K, Hiroi T, Kudo K, et al. High-performance, vertical-type organic transistors with built-in nanotriode arrays. Adv Mater, 2007, 19: 525–530

    Google Scholar 

  54. Moriyaa R, Yamaguchia T, Inouea Y, et al. Vertical field effect transistor based on graphene/transition metal dichalcogenide van der Waals heterostructure. ECS Trans, 2015, 69: 357–363

    Google Scholar 

  55. Chee S S, Seo D, Kim H, et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv Mater, 2019, 31: 1804422

    Google Scholar 

  56. Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

    Google Scholar 

  57. Ben-Sasson A J, Azulai D, Gilon H, et al. Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl Mater Interfaces, 2015, 7: 2149–2152

    Google Scholar 

  58. McCarthy M A, Liu B, Jayaraman R, et al. Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors. ACS Nano, 2011, 5: 291–298

    Google Scholar 

  59. Lee I, Kang W T, Shin Y S, et al. Ultrahigh gauge factor in graphene/MoS2 heterojunction field effect transistor with variable Schottky barrier. ACS Nano, 2019, 13: 8392–8400

    Google Scholar 

  60. Liu Y, Zhang G, Zhou H, et al. Ambipolar barristors for reconfigurable logic circuits. Nano Lett, 2017, 17: 1448–1454

    Google Scholar 

  61. Liu Y, Wu H, Cheng H C, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett, 2015, 15: 3030–3034

    Google Scholar 

  62. Yu Y J, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect. Nano Lett, 2009, 9: 3430–3434

    Google Scholar 

  63. Oh G, Kim J S, Jeon J H, et al. Graphene/pentacene barristor with ion-gel gate dielectric: flexible ambipolar transistor with high mobility and on/off ratio. ACS Nano, 2015, 9: 7515–7522

    Google Scholar 

  64. Kim J S, Choi Y J, Woo H J, et al. Schottky-barrier-controllable graphene electrode to boost rectification in organic vertical P-N junction photodiodes. Adv Funct Mater, 2017, 27: 1704475

    Google Scholar 

  65. Kim S, Choi Y J, Woo H J, et al. Piezotronic graphene barristor: efficient and interactive modulation of Schottky barrier. Nano Energy, 2018, 50: 598–605

    Google Scholar 

  66. Heo S, Kim S, Kim K, et al. Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron Device Lett, 2018, 39: 1948–1951

    Google Scholar 

  67. Chen C C, Chang C C, Li Z, et al. Gate tunable graphene-silicon Ohmic/Schottky contacts. Appl Phys Lett, 2012, 101: 223113

    Google Scholar 

  68. Sata Y, Moriya R, Morikawa S, et al. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface. Appl Phys Lett, 2015, 107: 023109

    Google Scholar 

  69. Shih C J, Wang Q H, Son Y, et al. Tuning on-off current ratio and field-effect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation. ACS Nano, 2014, 8: 5790–5798

    Google Scholar 

  70. Parui S, Pietrobon L, Ciudad D, et al. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. Adv Funct Mater, 2015, 25: 2972–2979

    Google Scholar 

  71. Kim B J, Hwang E, Kang M S, et al. Electrolyte-gated graphene Schottky barrier transistors. Adv Mater, 2015, 27: 5875–5881

    Google Scholar 

  72. Kim J S, Kim B J, Choi Y J, et al. An organic vertical field-effect transistor with underside-doped graphene electrodes. Adv Mater, 2016, 28: 4803–4810

    Google Scholar 

  73. Kim S, Choi Y J, Choi Y, et al. Large-area Schottky barrier transistors based on vertically stacked graphene-metal oxide heterostructures. Adv Funct Mater, 2017, 27: 1700651

    Google Scholar 

  74. Ojeda-Aristizabal C, Bao W, Fuhrer M S. Thin-film barristor: a gate-tunable vertical graphene-pentacene device. Phys Rev B, 2013, 88: 035435

    Google Scholar 

  75. Choi Y J, Kim S, Woo H J, et al. Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano, 2019, 13: 7877–7885

    Google Scholar 

  76. Farmer D B, Chiu H Y, Lin Y M, et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 2009, 9: 4474–4478

    Google Scholar 

  77. English C D, Shine G, Dorgan V E, et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett, 2016, 16: 3824–3830

    Google Scholar 

  78. Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557: 696–700

    Google Scholar 

  79. Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567: 323–333

    Google Scholar 

  80. Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439

    Google Scholar 

  81. Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568: 70–74

    Google Scholar 

  82. Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419–425

    Google Scholar 

  83. Liu Y, Stradins P, Wei S H. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv, 2016, 2: e1600069

    Google Scholar 

  84. Mitzi D B, Kosbar L L, Murray C E, et al. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428: 299–303

    Google Scholar 

  85. Appenzeller J, Lin Y M, Knoch J, et al. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett, 2004, 93: 196805

    Google Scholar 

  86. Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794

    Google Scholar 

  87. Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14: 1413–1418

    Google Scholar 

  88. Vaziri S, Lupina G, Henkel C, et al. A graphene-based hot electron transistor. Nano Lett, 2013, 13: 1435–1439

    Google Scholar 

  89. Zeng C, Song E B, Wang M, et al. Vertical graphene-base hot-electron transistor. Nano Lett, 2013, 13: 2370–2375

    Google Scholar 

  90. Rogers J A, Dodabalapur A, Bao Z, et al. Low-voltage 0.1 µm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Appl Phys Lett, 1999, 75: 1010–1012

    Google Scholar 

  91. Meijer E J, Tanase C, Blom P W M, et al. Switch-on voltage in disordered organic field-effect transistors. Appl Phys Lett, 2002, 80: 3838–3840

    Google Scholar 

  92. de Vusser S, Steudel S, Myny K, et al. Integrated shadow mask method for patterning small molecule organic semiconductors. Appl Phys Lett, 2006, 88: 103501

    Google Scholar 

  93. Hoppe A, Balster T, Muck T, et al. Scaling limits and MHz operation in thiophene-based field-effect transistors. Phys Stat Sol A, 2008, 205: 612–625

    Google Scholar 

  94. Wagner V, Wöbkenberg P, Hoppe A, et al. Megahertz operation of organic field-effect transistors based on poly(3-hexylthiopene). Appl Phys Lett, 2006, 89: 243515

    Google Scholar 

  95. Giovannetti G, Khomyakov P A, Brocks G, et al. Doping graphene with metal contacts. Phys Rev Lett, 2008, 101: 1–4

    Google Scholar 

  96. Un Jung Y, Na S I, Kim H K, et al. Organic photovoltaic devices with low resistance multilayer graphene transparent electrodes. J Vacuum Sci Tech A-Vacuum Surfs Films, 2012, 30: 050604

    Google Scholar 

  97. Choi S, Lee H, Ghaffari R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater, 2016, 28: 4203–4218

    Google Scholar 

  98. Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488–492

    Google Scholar 

  99. Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403: 521–523

    Google Scholar 

  100. Reda S. 3D integration advances computing. Nature, 2017, 547: 38–39

    Google Scholar 

  101. Knickerbocker J U, Andry P S, Dang B, et al. Three-dimensional silicon integration. IBM J Res Dev, 2008, 52: 553–569

    Google Scholar 

  102. Goldberger J, Hochbaum A I, Fan R, et al. Silicon vertically integrated nanowire field effect transistors. Nano Lett, 2006, 6: 973–977

    Google Scholar 

Download references

Acknowledgements

The work of Yuan LIU was supported by National Natural Science Foundation of China (Grant Nos. 51802090, 61874041, 51991341) and Hunan Science Fund for Excellent Young Scholars (Grant No. 812019037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Liu or Xiangfeng Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, Y. & Duan, X. Graphene-based vertical thin film transistors. Sci. China Inf. Sci. 63, 201401 (2020). https://doi.org/10.1007/s11432-020-2806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2806-8

Keywords

Navigation