Skip to main content
Log in

Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp.

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Electromicrobiology is a sub-discipline of microbiology that investigates electrical interplay between microorganisms and redox active materials, such as electrodes and solid-phase minerals, and the mechanisms underlying microbial ability to exchange electrons with the redox active materials that are external to the microbial cells. The microorganisms with extracellular electron transfer capability are often referred to as exoelectrogens. Although exoelectrogens were documented in early 1900’s, discovery of the dissimilatory metal-reducing microorganisms Geobacter and Shewanella spp. in late 1980’s marked the beginning of modern electromicrobiology. Since then, thorough and rigorous studies have made Geobacter and Shewanella spp. the two best characterized groups of exoelectrogens. These include identification and characterization of the molecular mechanisms for exchanging electrons with electrodes by Geobacter sulfurreducens and Shewanella oneidensis. In addition, a variety of applications of Geobacter and Shewanella spp. in microbial fuel cells and electrobiosynthesis, such as maintenance of redox balance during fermentations and bioremediations, have also been developed. This review briefly discusses the molecular mechanisms by which G. sulfurreducens and S. oneidensis exchange electrons with electrodes and then focuses on biotechnological applications of Geobacter and Shewanella spp. in microbial fuel cells and electrobiosynthesis as well as the future directions of this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bond D R, Holmes D E, Tender L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483–485

    Google Scholar 

  2. Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 2003, 69: 1548–1555

    Google Scholar 

  3. Bretschger O, Obraztsova A, Sturm C A, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol, 2007, 73: 7003–7012

    Google Scholar 

  4. Baron D, LaBelle E, Coursolle D, et al. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem, 2009, 284: 28865–28873

    Google Scholar 

  5. Bose A, Gardel E J, Vidoudez C, et al. Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun, 2014, 5: 3391

    Google Scholar 

  6. Ishii T, Kawaichi S, Nakagawa H, et al. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front Microbiol, 2015, 6: 994

    Google Scholar 

  7. Carlson H K, Iavarone A T, Gorur A, et al. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA, 2012, 109: 1702–1707

    Google Scholar 

  8. Lohner S T, Deutzmann J S, Logan B E, et al. Hydrogenase-in-dependent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J, 2014, 8: 1673–1681

    Google Scholar 

  9. Lovley D R. Electromicrobiology. Ann Rev Microbiol, 2012, 66: 391–409

    Google Scholar 

  10. Nealson K H, Rowe A R. Electromicrobiology: Realities, grand challenges, goals and predictions. Microb Biotech, 2016, 9: 595–600

    Google Scholar 

  11. Lovley D R, Phillips E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54: 1472–1480

    Google Scholar 

  12. Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330: 252–254

    Google Scholar 

  13. Myers C R, Nealson K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240: 1319–1321

    Google Scholar 

  14. Potter M C. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B-Biol Sci, 1911, 84: 260–276

    Google Scholar 

  15. Cohen B. The bacterial culture as an electrical half cell. J Bacteriol, 1931, 21: 18–19

    Google Scholar 

  16. Lovley D R, Phillips E J, Lonergan D J. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol, 1989, 55: 700–706

    Google Scholar 

  17. Lovley D R, Giovannoni S J, White D C, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993, 159: 336–344

    Google Scholar 

  18. Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 2006, 4: 752–764

    Google Scholar 

  19. Shi L, Dong H, Reguera G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Micro, 2016, 14: 651–662

    Google Scholar 

  20. Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Ann Rev Microbiol, 1994, 48: 311–343

    Google Scholar 

  21. Nealson K H, Belz A, McKee B. Breathing metals as a way of life: Geobiology in action. Antonie van Leeuwenhoek, 2002, 81: 215–222

    Google Scholar 

  22. Jiang Y, Shi M, Shi L. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. Sci China Life Sci, 2019, doi: https://doi.org/10.1007/s11427-018-9464-3

  23. Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol, 1951, 62: 605–611

    Google Scholar 

  24. Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol, 1997, 63: 4784–4792

    Google Scholar 

  25. Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE, 2007, 2: e667

    Google Scholar 

  26. Jiao Y, Kappler A, Croal L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ MicroBiol, 2005, 71: 4487–1496

    Google Scholar 

  27. Jiao Y, Newman D K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriology, 2007, 189: 1765–1773

    Google Scholar 

  28. Castelle C, Guiral M, Malarte G, et al. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem, 2008, 283: 25803–25811

    Google Scholar 

  29. Liu J, Wang Z, Belchik S M, et al. Identification and characterization of MtoA: A decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol, 2012, 3: 37

    Google Scholar 

  30. Shi L, Rosso K M, Zachara J M, et al. Mtr extracellular electrontransfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: A genomic perspective. Biochm Soc Trans, 2012, 40: 1261–1267

    Google Scholar 

  31. Emerson D, Field E K, Chertkov O, et al. Comparative genomics of freshwater Fe-oxidizing bacteria: Implications for physiology, ecology, and systematics. Front Microbiol, 2013, 4: 254

    Google Scholar 

  32. Emerson D, Fleming E J, McBeth J M. Iron-oxidizing bacteria: An environmental and genomic perspective. Ann Rev Microbiol, 2010, 64: 561–583

    Google Scholar 

  33. Summers Z M, Fogarty H E, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 2010, 330: 1413–1415

    Google Scholar 

  34. Rotaru A E, Shrestha P M, Liu F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol, 2014, 80: 4599–4605

    Google Scholar 

  35. Rotaru A E, Shrestha P M, Liu F, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci, 2014, 7: 408–415

    Google Scholar 

  36. Lovley D R. Syntrophy goes electric: Direct interspecies electron transfer. Ann Rev Microbiol, 2017, 71: 643–664

    Google Scholar 

  37. Lovley D R. Happy together: Microbial communities that hook up to swap electrons. ISME J, 2017, 11: 327–336

    Google Scholar 

  38. Ha P T, Lindemann S R, Shi L, et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun, 2017, 8: 13924

    Google Scholar 

  39. Deng X, Dohmae N, Nealson K H, et al. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv, 2018, 4: eaao5682

    Google Scholar 

  40. McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526: 531–535

    Google Scholar 

  41. Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 2015, 526: 587–590

    Google Scholar 

  42. Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016, 351: 703–707

    Google Scholar 

  43. Skennerton C T, Chourey K, Iyer R, et al. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methano-tr_phic archaea. mBio, 2017, 8: e00530–17

    Google Scholar 

  44. Thauer R K. Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol, 2011, 14: 292–299

    Google Scholar 

  45. Gorby Y, McLean J, Korenevsky A, et al. Redox-reactive membrane vesicles produced by Shewanella. Geobiology, 2008, 6: 232–241

    Google Scholar 

  46. Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 2006, 103: 11358–11363

    Google Scholar 

  47. El-Naggar M Y, Gorby Y A, Xia W, et al. The molecular density of states in bacterial nanowires. Biophys J, 2008, 95: L10–L12

    Google Scholar 

  48. El-Naggar M Y, Wanger G, Leung K M, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA, 2010, 107: 18127–18131

    Google Scholar 

  49. Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA, 2014, 111: 12883–12888

    Google Scholar 

  50. Pirbadian S, El-Naggar M Y. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys, 2012, 14: 13802–13808

    Google Scholar 

  51. Subramanian P, Pirbadian S, El-Naggar M Y, et al. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci USA, 2018, 115: E3246–E3255

    Google Scholar 

  52. Xu S, Barrozo A, Tender L M, et al. Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 Cells. J Am Chem Soc, 2018, 140: 10085–10089

    Google Scholar 

  53. Pfeffer C, Larsen S, Song J, et al. Filamentous bacteria transport electrons over centimetre distances. Nature, 2012, 491: 218–221

    Google Scholar 

  54. Bjerg J T, Boschker H T S, Larsen S, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA, 2018, 115: 5786–5791

    Google Scholar 

  55. Liu X, Shi L, Gu J D. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotech Adv, 2018, 36: 1815–1827

    Google Scholar 

  56. White G F, Edwards M J, Gomez-Perez L, et al. Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol, 2016, 68: 87–138

    Google Scholar 

  57. Kotloski N J, Gralnick J A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio, 2013, 4: e00553

    Google Scholar 

  58. Meitl L A, Eggleston C M, Colberg P J S, et al. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim Cosmochim Acta, 2009, 73: 5292–5307

    Google Scholar 

  59. Okamoto A, Hashimoto K, Nealson K H, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci USA, 2013, 110: 7856–7861

    Google Scholar 

  60. Coursolle D, Baron D B, Bond D R, et al. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriology, 2010, 192: 467–474

    Google Scholar 

  61. Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 2008, 105: 3968–3973

    Google Scholar 

  62. von Canstein H, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol, 2008, 74: 615–623

    Google Scholar 

  63. Shi L, Chen B, Wang Z, et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriology, 2006, 188: 4705–4714

    Google Scholar 

  64. Ross D E, Flynn J M, Baron D B, et al. Towards electrosynthesis in Shewanella: Energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE, 2011, 6: e16649

    Google Scholar 

  65. Rowe A R, Rajeev P, Jain A, et al. Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. mBio, 2018, 9: e02203–17

    Google Scholar 

  66. Steidl R J, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun, 2016, 7: 12217

    Google Scholar 

  67. Golden J, Yates M D, Halsted M, et al. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms. Phys Chem Chem Phys, 2018, 20: 25648–25656

    Google Scholar 

  68. Inoue K, Leang C, Franks A E, et al. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep, 2011, 3: 211–217

    Google Scholar 

  69. Inoue K, Qian X, Morgado L, et al. Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol, 2010, 76: 3999–4007

    Google Scholar 

  70. Chan C H, Levar C E, Jiménez-Otero F, et al. Genome scale mutational analysis of Geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides. J Bacteriol, 2017, 199: e00340–17

    Google Scholar 

  71. Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435: 1098–1101

    Google Scholar 

  72. Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012, 337: 686–690

    Google Scholar 

  73. Cheng S, Logan B E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA, 2007, 104: 18871–18873

    Google Scholar 

  74. Reguera G, Nevin K P, Nicoll J S, et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol, 2006, 72: 7345–7348

    Google Scholar 

  75. Hu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res, 2008, 42: 4172–4178

    Google Scholar 

  76. Call D F, Wagner R C, Logan B E. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell. Appl Environ Microbiol, 2009, 75: 7579–7587

    Google Scholar 

  77. Lu L, Guest J S, Peters C A, et al. Wastewater treatment for carbon capture and utilization. Nat Sustain, 2018, 1: 750–758

    Google Scholar 

  78. Kouzuma A, Oba H, Tajima N, et al. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol, 2014, 14: 190

    Google Scholar 

  79. Kouzuma A, Meng X Y, Kimura N, et al. Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol, 2010, 76: 4151–4157

    Google Scholar 

  80. Liu T, Yu Y Y, Deng X P, et al. Enhanced Shewanella biofilm promotes bioelectricity generation. Biotech Bioeng, 2015, 112: 2051–2059

    Google Scholar 

  81. Li F, Li Y X, Cao Y X, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun, 2018, 9: 3637

    Google Scholar 

  82. Velasquez-Orta S B, Head I M, Curtis T P, et al. The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotech, 2010, 85: 1373–1381

    Google Scholar 

  83. Li F, Li Y, Sun L, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotech Biofuels, 2017, 10: 196

    Google Scholar 

  84. Li F, Yin C, Sun L, et al. Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnol J, 2018, 13: 1700491

    Google Scholar 

  85. Qian F, Wang H, Ling Y, et al. Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Lett, 2014, 14: 3688–3693

    Google Scholar 

  86. Tan Y, Adhikari R Y, Malvankar N S, et al. Expressing the Geo_bacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity. mBio, 2017, 8: e02203–16

    Google Scholar 

  87. Reguera G, Pollina R B, Nicoll J S, et al. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriology, 2007, 189: 2125–2127

    Google Scholar 

  88. Yi H, Nevin K P, Kim B C, et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron, 2009, 24: 3498–3503

    Google Scholar 

  89. Butler J E, Young N D, Aklujkar M, et al. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics, 2012, 13: 471

    Google Scholar 

  90. Qu Y, Feng Y, Wang X, et al. Use of a coculture to enable current production by geobacter sulfurreducens. Appl Environ Microbiol, 2012, 78: 3484–3487

    Google Scholar 

  91. Kimura Z, Okabe S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. ISME J, 2013, 7: 1472–1482

    Google Scholar 

  92. McAnulty M J G, Poosarla V. Kim K Y, et al. Electricity from methane by reversing methanogenesis. Nat Commun, 2017, 8: 15419

    Google Scholar 

  93. Li D B, Cheng Y Y, Li L L, et al. Light-driven microbial dissimilatory electron transfer to hematite. Phys Chem Chem Phys, 2014, 16: 23003–23011

    Google Scholar 

  94. Nishio K, Hashimoto K, Watanabe K. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J Biosci Bioeng, 2013, 115: 412–417

    Google Scholar 

  95. Tender L M, Gray S A, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J Power Sources, 2008, 179: 571–575

    Google Scholar 

  96. Flynn J M, Ross D E, Hunt K A, et al. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio, 2010, 1: e00190–10

    Google Scholar 

  97. Bursac T, Gralnick J A, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotech Bioeng, 2017, 114: 1283–1289

    Google Scholar 

  98. Speers A M, Reguera G. Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ Sci Tech, 2012, 46: 7875–7881

    Google Scholar 

  99. Speers A M, Young J M, Reguera G. Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Tech, 2014, 48: 6350–6358

    Google Scholar 

  100. Zhang T, Gannon S M, Nevin K P, et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ MicroBiol, 2010, 12: 1011–1020

    Google Scholar 

  101. Adelaja O, Keshavarz T, Kyazze G. Treatment of phenanthrene and benzene using microbial fuel cells operated continuously for possible in situ and ex situ applications. Int Biodeterioration Biodegradation, 2017, 116: 91–103

    Google Scholar 

  102. Domínguez-Garay A, Quejigo J R, Dörfler U, et al. Bioelectroventing: An electrochemical-assisted bioremediation strategy for cleaning-up atrazine-polluted soils. Microb Biotech, 2018, 11: 50–62

    Google Scholar 

  103. Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol, 2004, 6: 596–604

    Google Scholar 

  104. Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol, 2008, 74: 5943–5947

    Google Scholar 

  105. Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Tech, 2005, 39: 8943–8947

    Google Scholar 

  106. Daghio M, Aulenta F, Vaiopoulou E, et al. Electrobioremediation of oil spills. Water Res, 2017, 114: 351–370

    Google Scholar 

  107. Pous N, Balaguer M D, Colprim J, et al. Opportunities for groundwater microbial electro-remediation. Microb Biotech, 2018, 11: 119–135

    Google Scholar 

  108. Rabaey K, Rozendal R A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat Rev Micro, 2010, 8: 706–716

    Google Scholar 

  109. Lovley D R, Nevin K P. Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotech, 2013, 24: 385–390

    Google Scholar 

  110. Ueki T, Nevin K P, Woodard T L, et al. Construction of a Geobacter strain with exceptional growth on cathodes. Front Microbiol, 2018, 9: 1512

    Google Scholar 

  111. Levar C E, Hoffman C L, Dunshee A J, et al. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J, 2017, 11: 741–752

    Google Scholar 

  112. Hirose A, Kasai T, Aoki M, et al. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nat Commun, 2018, 9: 1083

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. NSFC91851211 & 41772363), and the One Hundred Talents Program of Hubei Province and China University of Geosciences-Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Jiang, Y. & Shi, L. Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp.. Sci. China Technol. Sci. 62, 1670–1678 (2019). https://doi.org/10.1007/s11431-019-9509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-9509-8

En

Navigation