Skip to main content
Log in

Three Gorges Dam stability monitoring with time-series InSAR image analysis

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper, we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam. For the first time, we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008. Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River. Seasonal deformation due to varying temperature is also observed. The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods. We also found that there is an area of abnormal subsidence near Zigui County. This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Q, Zhao X, Cai J A, et al. P wave velocity structure of upper and middle crust beneath the Three Gorges reservoir dam and adjacent regions. Sci China Ser D-Earth Sci, 2009, 52: 567–578

    Article  Google Scholar 

  2. Fourniadis I G, Liu J G, Mason P J. Regional assessment of landslide impact in the three gorges area, China, using ASTER data: Wushan-Zigui. Landslides, 2007, 4: 267–278

    Article  Google Scholar 

  3. Shen C, Sun S, Liu S, et al. Dynamic variations of gravity field in head area of Three Gorges reservoir in recent years (in Chinese). J Geod Geodyn, 2004, 24: 6–13

    Google Scholar 

  4. Yang J, Wu Z. Present conditions and development of dam safety monitoring and control researches home and abroad (in Chinese). J Xi’an Univ Technol, 2002, 18: 26–30

    Google Scholar 

  5. Yan J, Li S. Optimization design of deformation monitoring for TGP’s dam (in Chinese). Yangtze River, 2002, 33: 36–38

    Google Scholar 

  6. Li Z, Liu Z, Wang Z. GPS in dam deformation monitoring (in Chinese). J Wuhan Univ Hydraulic Electr Eng, 1996, 29: 26–29

    Google Scholar 

  7. Guo H. Theory and Application of Earth Observation with Radar (in Chinese). Beijing: Science Press, 2000

    Google Scholar 

  8. Liao M, Lin H. Synthetic Aperture Radar Interferometry—Principle and Signal Processing (in Chinese). Beijing: Survey Press, 2003

    Google Scholar 

  9. Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry. Proc IEEE, 2000, 88: 333–382

    Article  Google Scholar 

  10. Hanssen R F. Radar Interferometry Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001

    Google Scholar 

  11. Madsen S, Zebker H, Martin J. Topographic mapping using radar interferometry: Processing techniques. IEEE Trans Geosci Remote Sens, 1993, 31: 246–256

    Article  Google Scholar 

  12. Liao M, Wang T, Lu L, et al. Reconstruction of DEMs from ERS-1/2 tandem data in mountainous area facilitated by SRTM data. IEEE Trans Geosci Remote Sens, 2007, 45: 2325–2335

    Article  Google Scholar 

  13. Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry. J Geophys Res, 1989, 94: 9183–9191

    Article  Google Scholar 

  14. Wang C, Zhang H, Shan X, et al. Application SAR interferometry for ground deformation detection in China. Photogramm Eng Remote Sens, 2004, 70: 1157–1166

    Google Scholar 

  15. Ge, L, Chang H, Rizos C. Mine subsidence monitoring ssing multi-source satellite SAR images. Photogramm Eng Remote Sens, 2007, 73: 259–266

    Google Scholar 

  16. Zebker H. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake. J Geophys Res, 1994, 99: 19617–19634

    Article  Google Scholar 

  17. Shan X J, Ma J, Wang C L, et al. Co-seismic ground deformation and source parameters of Mani M7.9 earthquake inferred from spaceborne D-InSAR observation data. Sci China Ser D-Earth Sci, 2004, 47: 481–488

    Article  Google Scholar 

  18. Zebker H, Villasenor A J. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens, 1992, 30: 950–959

    Article  Google Scholar 

  19. Goldstein R. Atmospheric limitations to repeat-pass interferometry. Geophys Res Lett, 1995, 22: 2517–2520

    Article  Google Scholar 

  20. Ding X, Li Z, Zhu J, et al. Atmospheric effects on InSAR measurements and their mitigations. Sensors, 2008, 8: 5426–5448

    Article  Google Scholar 

  21. Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens, 2001, 39: 8–20

    Article  Google Scholar 

  22. Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens, 2000, 38: 2202–2212

    Article  Google Scholar 

  23. Colesanti C, Ferretti A, Novali F, et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans Geosci Remote Sens, 2003, 41: 1685–1701

    Article  Google Scholar 

  24. Perissin D, Prati C, Engdahl M E, et al. Validating the SAR wavenumber shift principle with the ERS Envisat PS coherent combination. IEEE Trans Geosci Remote Sens, 2006, 44: 2343–2351

    Article  Google Scholar 

  25. Ferretti A, Savio G, Barzaghi R, et al. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans Geosci Remote Sens, 2007, 45: 1142–1153

    Article  Google Scholar 

  26. Perissin D. Validation of the sub-metric accuracy of vertical positioning of PS’s in C Band. IEEE Lett Geosci Remote Sens, 2008, 5: 502–506

    Article  Google Scholar 

  27. Wang Y, Liao M, Li D, et al. Subsidence velocity retrieval from long term coherent targets in radar interferometric stacks (in Chinese). Chin J Geophys, 2007, 50: 598–604

    Google Scholar 

  28. Perissin D, Rocca F. High-accuracy urban DEM using permanent scatterers. IEEE Trans Geosci Remote Sens, 2006, 44: 3338–3347

    Article  Google Scholar 

  29. Perissin D, Ferretti A. Urban target recognition by means of repeated spaceborne SAR Images. IEEE Trans Geosci Remote Sens, 2007, 45: 4043–4058

    Article  Google Scholar 

  30. Kampes B M. Radar Interferometry Persistent Scatterer Technique. Dordrecht: Springer, 2006.

    Google Scholar 

  31. Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture radar for Crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res, 2007, 112: B07407, doi: 10.1029/2006JB004763

    Article  Google Scholar 

  32. Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens, 2003, 41: 2243–2253

    Article  Google Scholar 

  33. Perissin D, Ferretti A, Piantanida R, et al. Repeat-pass SAR interferometry with partially coherent targets. Fringe 2007, Frascati (Italy), 26–30 November, 2007

  34. Hilley G, Burgmann R, Ferretti A, et al. Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 2004, 304: 1952–1955

    Article  Google Scholar 

  35. Wang T, Perissin D, Liao M, et al. Deformation monitoring by long term D-InSAR Analysis in Three Gorges area, China. Geoscience and Remote Sensing Symposium, IEEE International, 2008

  36. Dai H, Su H. Stability against sliding in intake dam section of Yangtze River Three Gorges Project (in Chinese). Rock Soil Mechanics, 2006, 27: 643–647

    Google Scholar 

  37. Touzi R, Lopes A, Bruniquel J, et al. Coherence estimation for SAR imagery. IEEE Trans Geosci Remote Sens, 1999, 37: 135–149

    Article  Google Scholar 

  38. Biggs N L. Discrete Mathematics. Oxford: Claredon Press, 1985

    Google Scholar 

  39. Zebker H, Chen K. Accurate estimation of correlation in InSAR observations. IEEE Lett Geosci Remote Sens, 2005, 2: 124–127

    Article  Google Scholar 

  40. Gatelli F, Guamieri A M, Parizzi F, et al. The wavenumber shift in SAR inferometry. IEEE Trans Geosci Remote Sens, 1994, 32: 855–865

    Article  Google Scholar 

  41. Liu G. Geology engineering overview of the Three Gorges Project (in Chinese). Hydrogeol Eng Geol, 1993, 20: 56–57

    Google Scholar 

  42. Huang S, Yin H, Jiang Z. Deformation Monitoring Data Processing (in Chinese). Wuhan: Wuhan University Press, 2004

    Google Scholar 

  43. Liao M, Tian X, Zhao Q. Missions and applications of TerraSAR- X/Tandem-X (in Chinese). J Geomatics, 2007, 32: 44–46

    Google Scholar 

  44. Soergel U, Thoennessen U, Brenner A, et al. High-resolution SAR data: New opportunities and challenges for the analysis of urban areas. IEEE Proc Radar Sonar Navigation, 2006, 153: 294–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Perissin, D., Rocca, F. et al. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 54, 720–732 (2011). https://doi.org/10.1007/s11430-010-4101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4101-1

Keywords

Navigation