Skip to main content
Log in

Regulation of DNA break repair by transcription and RNA

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Repair of DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway is a highly regulated process. A number of proteins that participate in HR are intricately modulated by the cell cycle and chromatin environments of DSBs. Recent studies have revealed a clear impact of transcription on HR in transcribed regions of the genome. Several models have been put forth to explain how the process of transcription and/or its RNA products may influence HR. Here we discuss the results and models from these studies, presenting an emerging view of transcription-coupled DSB repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aymard, F., Aguirrebengoa, M., Guillou, E., Javierre, B.M., Bugler, B., Arnould, C., Rocher, V., Iacovoni, J.S., Biernacka, A., Skrzypczak, M., Ginalski, K., Rowicka, M., Fraser, P., and Legube, G. (2017). Genomewide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 24, 353–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aymard, F., Bugler, B., Schmidt, C.K., Guillou, E., Caron, P., Briois, S., Iacovoni, J.S., Daburon, V., Miller, K.M., Jackson, S.P., and Legube, G. (2014). Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 21, 366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batenburg, N.L., Thompson, E.L., Hendrickson, E.A., and Zhu, X.D. (2015). Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J 34, 1399–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugaard, M., Baude, A., Fugger, K., Povlsen, L.K., Beck, H., Sørensen, C.S., Petersen, N.H.T., Sorensen, P.H.B., Lukas, C., Bartek, J., Lukas, J., Rohde, M., and Jäättelä, M. (2012). LEDGF (p75) promotes DNAend resection and homologous recombination. Nat Struct Mol Biol 19, 803–810.

    Article  CAS  PubMed  Google Scholar 

  • Eidahl, J.O., Crowe, B.L., North, J.A., McKee, C.J., Shkriabai, N., Feng, L., Plumb, M., Graham, R.L., Gorelick, R.J., Hess, S., Poirier, M.G., Foster, M.P., and Kvaratskhelia, M. (2013). Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41, 3924–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francia, S., Michelini, F., Saxena, A., Tang, D., de Hoon, M., Anelli, V., Mione, M., Carninci, P., and d’Adda di Fagagna, F. (2012). Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Wei, W., Li, M.M., Wu, Y.S., Ba, Z., Jin, K.X., Li, M.M., Liao, Y.Q., Adhikari, S., Chong, Z., Zhang, T., Guo, C.X., Tang, T.S., Zhu, B.T., Xu, X.Z., Mailand, N., Yang, Y.G., Qi, Y., and Rendtlew Danielsen, J.M. (2014). Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res 24, 532–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanawalt, P.C., and Spivak, G. (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9, 958–970.

    Article  CAS  PubMed  Google Scholar 

  • Iacovoni, J.S., Caron, P., Lassadi, I., Nicolas, E., Massip, L., Trouche, D., and Legube, G. (2010). High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29, 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskin, H., Shen, Y., Huang, F., Patel, M., Yang, T., Ashley, K., Mazin, A.V., and Storici, F. (2014). Transcript-RNA-templated DNA recombination and repair. Nature 515, 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marteijn, J.A., Lans, H., Vermeulen, W., and Hoeijmakers, J.H.J. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15, 465–481.

    Article  CAS  PubMed  Google Scholar 

  • Ohle, C., Tesorero, R., Schermann, G., Dobrev, N., Sinning, I., and Fischer, T. (2016). Transient RNA-DNA hybrids are required for efficient doublestrand break repair. Cell 167, 1001–1013.e7.

    Article  CAS  PubMed  Google Scholar 

  • Orthwein, A., Noordermeer, S.M., Wilson, M.D., Landry, S., Enchev, R.I., Sherker, A., Munro, M., Pinder, J., Salsman, J., Dellaire, G., Xia, B., Peter, M., and Durocher, D. (2015). A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R., and Bickmore, W.A. (2012). Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8, e1002717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storici, F., Bebenek, K., Kunkel, T.A., Gordenin, D.A., and Resnick, M.A. (2007). RNA-templated DNA repair. Nature 447, 338–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantin, D. (1998). RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 273, 27794–27799.

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen, W., and Fousteri, M. (2013). Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 5, a012625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., and Goldstein, M. (2016). Small RNAs recruit chromatin-modifying enzymes MMSET and Tip60 to reconfigure damaged DNA upon double-strand break and facilitate repair. Cancer Res 76, 1904–1915.

    Article  CAS  PubMed  Google Scholar 

  • Wei, L., Nakajima, S., Böhm, S., Bernstein, K.A., Shen, Z., Tsang, M., Levine, A.S., and Lan, L. (2015). DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc Natl Acad Sci USA 112, E3495–E3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Rendtlew Danielsen, J.M., Yang, Y.G., and Qi, Y. (2012). A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, J., Wang, S., Ling, D., Hsu, P.H., Zou, L., Jambhekar, A., He, C., and Shi, Y. (2017). RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (GM076388 and CA197779 to Lee Zou., GM118833 to Li Lan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, J., Lan, L. & Zou, L. Regulation of DNA break repair by transcription and RNA. Sci. China Life Sci. 60, 1081–1086 (2017). https://doi.org/10.1007/s11427-017-9164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9164-1

Keywords

Navigation