Skip to main content
Log in

Visible light-mediated NHCs and photoredox co-catalyzed radical 1,2-dicarbonylation of alkenes for 1,4-diketones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alkenes are ubiquitous, and the difunctionalization of alkenes represents one of the most practical approaches for the construction of value-added compounds. Dicarbonylation of alkenes provides direct access to value-added 1,4-dicarbonyl compounds. However, selectivity control for unsymmetric 1,2-dicarbonylation is of great challenge. We herein describe NHCs and photocatalysis co-catalyzed three-component radical 1,2-dicarbonylation of alkenes by distinguishing two carbonyl groups, providing structurally diversified 1,4-diketones. Distinct properties of acyl radical and NHCs-stabilized ketyl radical contributed to selectivity control. Acyl radicals are rapidly added to alkenes delivering alkyl radicals, which undergo subsequent radical-radical cross-coupling with NHCs-stabilized ketyl-type radicals, affording 1,2-dicarbonylation products. This transformation features mild reaction conditions, broad substrate scope, and excellent selectivity, providing a general and practical approach for the dicarbonylation of olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu X, Wu S, Zhu C. Tetrahedron Lett, 2018, 59: 1328–1336

    Article  CAS  Google Scholar 

  2. Wu X, Zhu C. Acc Chem Res, 2020, 53: 1620–1636

    Article  CAS  PubMed  Google Scholar 

  3. Fischer H. Chem Rev, 2001, 101: 3581–3610

    Article  CAS  PubMed  Google Scholar 

  4. Leifert D, Studer A. Angew Chem Int Ed, 2020, 59: 74–108

    Article  CAS  Google Scholar 

  5. Hartmann M, Li Y, Studer A. J Am Chem Soc, 2012, 134: 16516–16519

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Studer A. Angew Chem Int Ed, 2012, 51: 8221–8224

    Article  CAS  Google Scholar 

  7. Speckmeier E, Fischer TG, Zeitler K. J Am Chem Soc, 2018, 140: 15353–15365

    Article  CAS  PubMed  Google Scholar 

  8. Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. ACS Catal, 2019, 9: 2777–2830

    Article  CAS  Google Scholar 

  9. Zhu S, Qin J, Wang F, Li H, Chu L. Nat Commun, 2019, 10: 749–756

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patra T, Das M, Daniliuc CG, Glorius F. Nat Catal, 2021, 4: 54–61

    Article  CAS  Google Scholar 

  11. Lai SQ, Wei BY, Wang JW, Yu W, Han B. Angew Chem Int Ed, 2021, 60: 21997–22003

    Article  CAS  Google Scholar 

  12. Wang S, Tang S, Lei A. Sci Bull, 2018, 63: 1006–1009

    Article  CAS  Google Scholar 

  13. Tang B, Zhao J, Xu JF, Zhang X. Chem Sci, 2020, 11: 1192–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fürstner A, Nagano T. J Am Chem Soc, 2007, 129: 1906–1907

    Article  PubMed  Google Scholar 

  15. Renata H, Zhou Q, Dünstl G, Felding J, Merchant RR, Yeh CH, Baran PS. J Am Chem Soc, 2015, 137: 1330–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li NS, Yu S, Kabalka GW. Organometallics, 1998, 17: 3815–3818

    Article  CAS  Google Scholar 

  17. Yamamoto Y, Maekawa H, Goda S, Nishiguchi I. Org Lett, 2003, 5: 2755–2758

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhang Y. Tetrahedron, 2003, 59: 8429–8437

    Article  CAS  Google Scholar 

  19. Takaki K, Ohno A, Hino M, Shitaoka T, Komeyama K, Yoshida H. Chem Commun, 2014, 50: 12285–12288

    Article  CAS  Google Scholar 

  20. Takaki K, Hino M, Ohno A, Komeyama K, Yoshida H, Fukuoka H. Beilstein J Org Chem, 2017, 13: 1816–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Li B, Xia W. Org Lett, 2020, 22: 1056–1061

    Article  CAS  PubMed  Google Scholar 

  22. Cheng YY, Yu JX, Lei T, Hou HY, Chen B, Tung CH, Wu LZ. Angew Chem Int Ed, 2021, 60: 26822–26828

    Article  CAS  Google Scholar 

  23. Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. ACS Catal, 2022, 12: 285–294

    Article  CAS  Google Scholar 

  24. Wang L, Sun J, Xia J, Li M, Zhang L, Ma R, Zheng G, Zhang Q. ChemRxiv, 2021, https://doi.org/10.26434/chemrxiv-2021-0c291

  25. Liu J, Lu LQ, Luo Y, Zhao W, Sun PC, Jin W, Qi X, Cheng Y, Xiao WJ. ACS Catal, 2022, 12: 1879–1885

    Article  CAS  Google Scholar 

  26. Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem Rev, 1999, 99: 1991–2070

    Article  CAS  PubMed  Google Scholar 

  27. Enders D, Niemeier O, Henseler A. Chem Rev, 2008, 107: 5606–5655

    Article  Google Scholar 

  28. Bugaut X, Glorius F. Chem Soc Rev, 2012, 41: 3511–3522

    Article  CAS  PubMed  Google Scholar 

  29. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem Rev, 2015, 115: 9307–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murauski KJR, Jaworski AA, Scheidt KA. Chem Soc Rev, 2018, 47: 1773–1782

    Article  CAS  PubMed  Google Scholar 

  31. Chen XY, Gao ZH, Ye S. Acc Chem Res, 2020, 53: 690–702

    Article  CAS  PubMed  Google Scholar 

  32. Bellotti P, Koy M, Hopkinson MN, Glorius F. Nat Rev Chem, 2021, 5: 711–725

    Article  CAS  Google Scholar 

  33. Li T, Jin Z, Chi YR. Sci China Chem, 2022, 65: 210–223

    Article  CAS  Google Scholar 

  34. Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. Sci China Chem, 2021, 64: 7–16

    Article  CAS  Google Scholar 

  35. Sumida Y, Ohmiya H. Chem Soc Rev, 2021, 50: 6320–6332

    Article  CAS  PubMed  Google Scholar 

  36. Ishii T, Kakeno Y, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 3854–3858

    Article  CAS  PubMed  Google Scholar 

  37. Ishii T, Ota K, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 14073–14077

    Article  CAS  PubMed  Google Scholar 

  38. Li JL, Liu YQ, Zou WL, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng HJ, Li QZ. Angew Chem Int Ed, 2020, 59: 1863–1870

    Article  CAS  Google Scholar 

  39. Matsuki Y, Ohnishi N, Kakeno Y, Takemoto S, Ishii T, Nagao K, Ohmiya H. Nat Commun, 2021, 12: 3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim I, Im H, Lee H, Hong S. Chem Sci, 2020, 11: 3192–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mavroskoufis A, Jakob M, Hopkinson MN. ChemPhotoChem, 2020, 4: 5147–5153

    Article  CAS  Google Scholar 

  42. Liu J, Xing X-N, Huang J-H, Lu L-Q, Xiao W-J. Chem Sci, 2020, 11: 10605–10613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guin J, DeSarkar S, Grimme S, Studer A. Angew Chem Int Ed, 2008, 47: 8727–8730

    Article  CAS  Google Scholar 

  44. Meng QY, Lezius L, Studer A. Nat Commun, 2021, 12: 2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng QY, Döben N, Studer A. Angew Chem Int Ed, 2020, 59: 19956–19960

    Article  CAS  Google Scholar 

  46. Liu K, Studer A. J Am Chem Soc, 2021, 143: 4903–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuo Z, Daniliuc CG, Studer A. Angew Chem Int Ed, 2021, 60: 25252–25257

    Article  CAS  Google Scholar 

  48. Bay AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew Chem Int Ed, 2020, 59: 9143–9148

    Article  CAS  Google Scholar 

  49. Bay AV, Fitzpatrick KP, González-Montiel GA, Farah AO, Cheong PHY, Scheidt KA. Angew Chem Int Ed, 2021, 60: 17925–17931

    Article  CAS  Google Scholar 

  50. Ren SC, Lv WX, Yang X, Yan JL, Xu J, Wang FX, Hao L, Chai H, Jin Z, Chi YR. ACS Catal, 2021, 11: 2925–2934

    Article  CAS  Google Scholar 

  51. Ren S-C, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Nat Commun, 2022, 13: 2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sato Y, Goto Y, Nakamura K, Miyamoto Y, Sumida Y, Ohmiya H. ACS Catal, 2021, 11: 12886–12892

    Article  CAS  Google Scholar 

  53. Zhang B, Qi JQ, Liu Y, Li Z, Wang J. Org Lett, 2022, 24: 279–283

    Article  CAS  PubMed  Google Scholar 

  54. Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. Chem Rev, 2019, 119: 7113–7278

    Article  CAS  PubMed  Google Scholar 

  55. Zhang G, Liu Y, Zhao J, Li Y, Zhang Q. Sci China Chem, 2019, 62: 1476–1491

    Article  CAS  Google Scholar 

  56. Wang L, Ma R, Sun J, Zheng G, Zhang Q. Chem Sci, 2022, 13: 3169–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Low yield of 42 by employing 87 as ketyl radical source might be caused by structural modification of the NHC

  58. Zhuo J, Zhang Y, Li Z, Li C. ACS Catal, 2020, 10: 3895–3903

    Article  CAS  Google Scholar 

  59. Kwon K, Simons RT, Nandakumar M, Roizen JL. Chem Rev, 2022, 122: 2353–2428

    Article  CAS  PubMed  Google Scholar 

  60. Huang H, Dai QS, Leng HJ, Li QZ, Yang SL, Tao YM, Zhang X, Qi T, Li JL. Chem Sci, 2022, 13: 2584–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strieth-Kalthoff F, Glorius F. Chem, 2020, 6: 1888–1903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001157, 21831002, 22193012), the Ten Thousand Talents Program, the Fundamental Research Funds for the Central Universities (2412022QD016, 2412021QD007), the Natural Science Foundation of Jilin Province (YDZJ202201ZYTS338) and the Natural Science Foundation of Shaanxi Province (2020JQ-404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangfan Zheng or Qian Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, J., Xia, J. et al. Visible light-mediated NHCs and photoredox co-catalyzed radical 1,2-dicarbonylation of alkenes for 1,4-diketones. Sci. China Chem. 65, 1938–1944 (2022). https://doi.org/10.1007/s11426-022-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1328-5

Keywords

Navigation