Skip to main content
Log in

MB 2−8 (M = Be, Mg, Ca, Sr, and Ba): Planar octacoordinate alkaline earth metal atoms enclosed by boron rings

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Complexes involving planar octacoordinate alkaline earth metal atoms in the centers of eight-membered boron rings have been investigated by two density functional theory (DFT) methods. BeB 2−8 with D 8h symmetry is predicted to be stable, both geometrically and electronically, since a good match is achieved between the size of the central beryllium atom and the eight-membered boron ring. By contrast, the other alkaline earth metal atoms cannot be stabilized in the center of a planar eight-membered boron ring because of their large radii. By following the out-of-plane imaginary vibrational frequency, pyramidal C 8v MgB 2−8 , CaB 2−8 , SrB 2−8 , and BaB 2−8 structures are obtained. The presence of delocalized π and σ valence molecular orbitals in D 8h BeB 2−8 gives rise to aromaticity, which is reflected by the value of the nucleus-independent chemical shift. The D 8h BeB 2−8 structure is confirmed to be the global minimum on the potential energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Monkhorst HJ. Activation energy for interconversion of enantiomers containing an asymmetric carbon atom without breaking bonds. Chem Commun, 1968, 18: 1111–1112

    Google Scholar 

  2. Collins JB, Dill JD, Jemmis ED, Apeloig Y, Schleyer PvR, Seeger R, Pople JA. Stabilization of planar tetracoordinate carbon. J Am Chem Soc, 1976, 98: 5419–5427

    Article  CAS  Google Scholar 

  3. Cotton FA, Millar M. The probable existence of a triple bond between two vanadium atoms. J Am Chem Soc, 1977, 99: 7886–7891

    Article  CAS  Google Scholar 

  4. Keese R, Pfenninger A, Roesle A. Planarization of tetracoordinate carbon atom. Synthesis of 13-oxa-14-oxo-pentacyclo[5.5.2.1.04,15010,15] pentadecane, a bridged ‘tetraquinacane’. Helv Chim Acta, 1979, 62: 326–334

    Article  CAS  Google Scholar 

  5. Boldyrev, AI, Simons, J. Tetracoordinated planar carbon in pentaatomic molecules. J Am Chem Soc, 1998, 120: 7967–7972

    Article  CAS  Google Scholar 

  6. Li X, Wang LS, Boldyrev AI, Simons J. Tetracoordinated planar carbon in the Al4C anion. A combined photoelectron spectroscopy and ab initio study. J Am Chem Soc, 1999, 121: 6033–6038

    Article  CAS  Google Scholar 

  7. Rasmussen DR, Radom L. Planar-tetracoordinate carbon in a neutral saturated hydrocarbon: theoretical design and characterization. Angew Chem Int Ed, 1999, 38: 2876–2878

    Article  CAS  Google Scholar 

  8. Li X, Zhang HF, Wang LS, Geske GD, Boldyrev AI. Pentaatomic tetracoordinate planar carbon. Angew Chem Int Ed, 2000, 39: 3630–3632

    Article  CAS  Google Scholar 

  9. Wang LS, Boldyrev AI, Li X, Simons J. Experimental observation of pentaatomic tetracoordinate planar carbon-containing molecules. J Am Chem Soc, 2000, 122: 7681–7687

    Article  CAS  Google Scholar 

  10. Wang ZX, Manojkumar TK, Wannere C, Schleyer PvR. A theoretical prediction of potentially observable lithium compounds with planar tetracoordinate carbons. Org Lett, 2001, 3: 1249–1252

    Article  CAS  Google Scholar 

  11. Wang ZX, Schleyer PvR. A new strategy to achieve perfectly planar carbon tetracoordination. J Am Chem Soc, 2001, 123: 994–995

    Article  CAS  Google Scholar 

  12. Wang ZX, Schleyer PvR. The theoretical design of neutral planar tetracoordinate carbon molecules with C(C)4 substructures. J Am Chem Soc, 2002, 124: 11979–11982

    Article  CAS  Google Scholar 

  13. Merino G, Mendez-Rojas MA, Vela A. (C5M2n )n (M = Li, Na, K, and n = 0, 1, 2). A new family of molecules containing planar tetracoordinate carbons. J Am Chem Soc, 2003, 125: 6026–6027

    Article  CAS  Google Scholar 

  14. Li S-D, Ren G-M, Miao C-Q, Jin Z-H. M4H4X: Hydrometals (M = Cu, Ni) containing tetracoordinate planar nonmetals (X = B, C, N, O). Angew Chem Int Ed, 2004, 43: 1371–1373

    Article  CAS  Google Scholar 

  15. Merino G, Mendez-Rojas MA, Beltran HI, Corminboeuf C, Heine T, Vela A. Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon. J Am Chem Soc, 2004, 126: 16160–16169

    Article  CAS  Google Scholar 

  16. Pancharatna PD, Mendez-Rojas MA, Merino G, Vela A, Hoffmann R. Planar tetracoordinate carbon in extended systems. J Am Chem Soc, 2004, 126: 15309–15315

    Article  CAS  Google Scholar 

  17. Esteves PM, Ferreira NBP, Corroa RJ. Neutral structures with a planar tetracoordinated carbon based on spiropentadiene analogues. J Am Chem Soc, 2005, 127: 8680–8685

    Article  CAS  Google Scholar 

  18. Perez N, Heine T, Barthel R, Seifert G, Vela A, Mendez-Rojas MA, Merino G. Planar tetracoordinate carbons in cyclic hydrocarbons. Org Lett, 2005, 7: 1509–1512

    Article  CAS  Google Scholar 

  19. Li S-D, Ren G-M, Miao C-Q. (M4H3X)2B2O2: Hydrometal complexes (M = Ni, Mg) containing double tetracoordinate planar nonmetal centers (X = C, N). J Phys Chem A, 2005, 109: 259–261

    Article  CAS  Google Scholar 

  20. Minyaev RM, Gribanova TN, Minkin VI, Starikov AG, Hoffmann R. Planar and pyramidal tetracoordinate carbon in organoboron compounds. J Org Chem, 2005, 70: 6693–6704

    Article  CAS  Google Scholar 

  21. Su MD. Theoretical designs for planar tetracoordinated carbon in Cu, Ag, and Au organometallic chemistry: A new target for synthesis. Inorg Chem, 2005, 44: 4829–4833

    Article  CAS  Google Scholar 

  22. Roy D, Corminboeuf C, Wannere CS, King RB, Schleyer PvR. Planar tetracoordinate carbon atoms centered in bare four-membered rings of late transition metals. Inorg Chem, 2006, 45: 8902–8906

    Article  CAS  Google Scholar 

  23. Yang LM, Ding YH, Sun CC. Assembly and stabilization of a planar tetracoordinated carbon radical CAl3Si: A way to design spin-based molecular materials. J Am Chem Soc, 2007, 129: 1900–1901

    Article  CAS  Google Scholar 

  24. Yang LM, Ding YH, Sun CC. Design of sandwichlike complexes based on the planar tetracoordinate carbon unit CAl 2−4 . J Am Chem Soc, 2007, 129: 658–665

    Article  CAS  Google Scholar 

  25. Exner K, Schleyer PvR. Planar hexacoordinate carbon: A viable possibility. Science, 2000, 290: 1937–1940

    Article  CAS  Google Scholar 

  26. Wang Z-X, Schleyer PvR. Construction principles of “hyparenes”: Families of molecules with planar pentacoordinate carbons. Science, 2001, 292: 2465–2469

    Article  CAS  Google Scholar 

  27. Wang Z-X, Schleyer PvR. Planar hypercoordinate carbons joined: Wheel-shaped molecules with C-C axles. Angew Chem Int Ed, 2002, 41: 4082–4085

    Article  CAS  Google Scholar 

  28. Li S-D, Guo J-C, Miao C-Q, Ren G-M. [(ν6-B6X)2M] (X = C, N; M = Mn, Fe, Co, Ni): A new class of transition-metal sandwich-type complexes. Angew Chem Int Ed, 2005, 44: 2158–2161

    Article  CAS  Google Scholar 

  29. Li S-D, Miao C-Q, Ren G-M, Guo J-C. Triple-decker transition-metal complexes (CnHn)M(B6C)M(CnHn) (M = Fe, Ru, Mn, Re; n = 5, 6) containing planar hexacoordinate carbon atoms. Eur J Inorg Chem, 2006, 2567–2571

  30. Li S-D, Miao C-Q, Guo J-C. Tetradecker transition metal complexes containing double planar hexacoordinate carbons and double planar heptacoordinate borons. J Phys Chem A, 2007, 111: 12069–12071

    Article  CAS  Google Scholar 

  31. Minyaev RM, Gribanova TN, Starikov A G, Minkin V I. Heptacoordinated carbon and nitrogen in a planar boron ring. Dokl Chem, 2002, 382: 41–45

    Article  CAS  Google Scholar 

  32. Islas R, Heine T, Ito K, Schleyer PvR, Merino G. Boron rings enclosing planar hypercoordinate group 14 elements. J Am Chem Soc, 2007, 129: 14767–14774

    Article  CAS  Google Scholar 

  33. Zhai H-J, Wang L-S, Alexandrova AN, Boldyrev AI. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: Observation and confirmation. Angew Chem Int Ed, 2003, 42: 6004–6008

    Article  CAS  Google Scholar 

  34. Li SD, Miao CQ, Guo JC, Ren GM. Planar tetra-, penta-, hexa-, hepta-, and octacoordinate silicons: A universal structural pattern. J Am Chem Soc, 2004, 126: 16227–16231

    Article  CAS  Google Scholar 

  35. Lein M, Frunzke J, Frenking G. A novel class of aromatic compounds: Metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew Chem Int Ed, 2003, 42: 1303–1306

    Article  CAS  Google Scholar 

  36. Li X, Kiran B, Cui L-F, Wang L-S. Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M=Ti, V, Cr). Phys Rev Lett, 2005, 95: 253401

    Article  CAS  Google Scholar 

  37. Höltzl T, Janssens E, Veldeman N, Veszprémi T, Lievens P, Nguyen M T. The Cu7Sc cluster is a stable σ-aromatic seven-membered ring. ChemPhysChem, 2008, 9: 833–838

    Article  CAS  Google Scholar 

  38. Tanaka H, Neukermans S, Janssens E, Silverans R, Lievens P. σ Aromaticity of the bimetallic Au5Zn+ cluster. J Am Chem Soc, 2003, 125: 2862–2863

    Article  CAS  Google Scholar 

  39. Luo Q. Boron rings containing planar octa-and enneacoordinate cobalt, iron and nickel metal elements. Sci China Ser B: Chem, 2008, 51: 607–613

    Article  CAS  Google Scholar 

  40. Yang Z, Xiong S-J. Structures and electronic properties of small FeBn (n = 1–10) clusters. J Chem Phys, 2008, 128: 184310

    Article  CAS  Google Scholar 

  41. Wu Q, Tang Y, Zhang X. Boron ring containing planar octacoordinate iron and cobalt. Sci China Ser B: Chem, 2009, 52: 288–294

    Article  CAS  Google Scholar 

  42. Miao CQ, Guo JC, Li SD. M@B9 and M@B10 molecular wheels containing planar nona- and deca-coordinate heavy group 11, 12, and 13 metals (M = Ag, Au, Cd, Hg, In, Tl). Sci China Ser B: Chem, 2009, 52: 900–904

    Article  CAS  Google Scholar 

  43. Ito K, Pu Z, Li Q-S, Schleyer PvR. Cyclic boron clusters enclosing planar hypercoordinate cobalt, iron, and nickel. Inorg Chem, 2008, 47: 10906–10910

    Article  CAS  Google Scholar 

  44. Pu Z, Ito K, Schleyer PvR, Li Q-S. Planar hepta-, octa-, ennea-, and decacoordinate first row transition metals enclosed by boron rings. Inorg Chem, 2009, 48: 10679–10686

    Article  CAS  Google Scholar 

  45. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  47. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  48. Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33: 8822–8824

    Article  Google Scholar 

  49. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  50. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc, 1996, 118: 6317–6318

    Article  CAS  Google Scholar 

  51. Schleyer PvR, Jiao H, Hommes NJRvE, Malkin VG, Malkina OL. An evaluation of the aromaticity of inorganic rings: Refined evidence from magnetic properties. J Am Chem Soc, 1997, 119: 12669–12670

    Article  CAS  Google Scholar 

  52. Dodds JL, McWeeny R, Sadlej AJ. Self-consistent perturbation theory. Open-shell states in perturbation-dependent nonorthogonal basis sets. Mol Phys, 1980, 41: 1419–1430

    Article  Google Scholar 

  53. Wolinski K, Hilton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc, 1990, 112: 8251–8260

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, B04 ed, Gaussian, Inc: Pittsburgh, PA, 2003

    Google Scholar 

  55. Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent radii revisited. Dalton Trans, 2008, 2832-2838

  56. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF III, Schleyer PvR, Robinson GH. A stable neutral diborene containing a B=B double bond. J Am Chem Soc, 2007, 129: 12412–12413

    Article  CAS  Google Scholar 

  57. Zubarev DY, Boldyrev AI. Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem, 2006, 28: 251–268

    Article  CAS  Google Scholar 

  58. Zubarev DY, Boldyrev AI. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys, 2008, 10: 5207–5217

    Article  CAS  Google Scholar 

  59. Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI, Zakrzewski VG. Photoelectron spectroscopy and ab initio Study of B 3 and B 4 anions and their neutrals. J Phys Chem A, 2003, 107: 9319–9328

    Article  CAS  Google Scholar 

  60. Kuznetsov AE, Boldyrev AI. Theoretical evidence of aromaticity in X 3 (X = B, Al, Ga) species. Struct Chem, 2002, 13: 141–148

    Article  CAS  Google Scholar 

  61. Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI. Electronic structure and chemical bonding of B 5 and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys, 2002, 117: 7917–7924

    Article  CAS  Google Scholar 

  62. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Steiner E, Fowler PW. Structure and bonding in B 6 and B6: Planarity and antiaromaticity. J Phys Chem A, 2003, 107: 1359–1369

    Article  CAS  Google Scholar 

  63. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Electronic structure, isomerism, and chemical bonding in B 7 and B7. J Phys Chem A, 2004, 108: 3509–3517

    Article  CAS  Google Scholar 

  64. Zhai HJ, Kiran B, Li J, Wang LS. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat Mater, 2003, 2: 827–833

    Article  CAS  Google Scholar 

  65. Wang LM, Huang W, Averkiev BB, Boldyrev AI, Wang L-S. CB 7 : Experimental and theoretical evidence against hypercoordinate planar carbon. Angew Chem Int Ed, 2007, 46: 4550–4553

    Article  CAS  Google Scholar 

  66. Averkiev BB, Zubarev DY, Wang LM, Huang W, Wang L-S, Boldyrev AI. Carbon avoids hypercoordination in CB 6 , CB 2−6 , and C2B 5 planar carbon-boron clusters. J Am Chem Soc, 2008, 130: 9248–9250

    Article  CAS  Google Scholar 

  67. Averkiev BB, Boldyrev AI. Theoretical design of planar molecules with a nona- and decacoordinate central atom. Russ J Gen Chem, 2008, 78: 769–773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MaoFa Ge or QianShu Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Z., Ge, M. & Li, Q. MB 2−8 (M = Be, Mg, Ca, Sr, and Ba): Planar octacoordinate alkaline earth metal atoms enclosed by boron rings. Sci. China Chem. 53, 1737–1745 (2010). https://doi.org/10.1007/s11426-010-4037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4037-5

Keywords

Navigation