Skip to main content
Log in

High accuracy analysis of tensor-product linear pentahedral finite elements for variable coefficient elliptic equations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

For a general second-order variable coefficient elliptic boundary value problem in three dimensions, the authors derive the weak estimate of the first type for tensor-product linear pentahedral finite elements. In addition, the estimate for the W 1, 1-seminorm of the discrete derivative Green’s function is given. Finally, the authors show that the derivatives of the finite element solution u h and the corresponding interpolant Πu are superclose in the pointwise sense of the L -norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Brandts and M. Křížek, History and future of superconvergence in three dimensional finite element methods, Proceedings of the Conference on Finite Element Methods: Three-Dimensional Problems, GAKUTO international series mathematics science application, Gakkotosho, Tokyo, 2001, 15: 22–33.

    Google Scholar 

  2. J. H. Brandts and M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes, IMA J. Numer. Anal., 2003, 23: 489–505.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. H. Brandts and M. Křížek, Superconvergence of tetrahedral quadratic finite elements, J. Comp. Math., 2005, 23: 27–36.

    MATH  Google Scholar 

  4. C. M. Chen, Optimal points of stresses for the linear tetrahedral element, Nat. Sci. J. Xiangtan Univ., 1980, 3: 16–24 (in Chinese).

    Google Scholar 

  5. C. M. Chen, Construction Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Changsha, 2001 (in Chinese).

    Google Scholar 

  6. L. Chen, Superconvergence of tetrahedral linear finite elements, Inter. J. Numer. Anal. Model., 2006, 3: 273–282.

    MATH  Google Scholar 

  7. G. Goodsell, Gradient superconvergence for piecewise linear tetrahedral finite elements, Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory, 1990.

  8. G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element, Numer. Meth. Part. Diff. Equa., 1994, 10: 651–666.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Kantchev and R. D. Lazarov, Superconvergence of the gradient of linear finite elements for 3D Poisson equation, Proceedings of the Conference on Optimal Algorithms (ed. by B. Sendov), Bulgarian Academy of Sciences, Sofia, 1986: 172–182.

    Google Scholar 

  10. Q. Lin and N. N. Yan, Construction and Analysis of High Efficient Finite Elements, Hebei University Press, Baoding, 1996 (in Chinese).

    Google Scholar 

  11. R. C. Lin and Z. M. Zhang, Natural superconvergent points in 3D finite elements, SIAM J. Numer. Anal., 2008, 46: 1281–1297.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. H. Liu and Q. D. Zhu, Uniform superapproximation of the derivative of tetrahedral quadratic finite element approximation, J. Comp. Math., 2005, 23: 75–82.

    MathSciNet  MATH  Google Scholar 

  13. J. H. Liu and Q. D. Zhu, Maximum-norm superapproximation of the gradient for the trilinear block finite element, Numer. Meth. Part. Diff. Equa., 2007, 23: 1501–1508.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. H. Liu and Q. D. Zhu, Pointwise supercloseness of tensor-product block finite elements, Numer. Meth. Part. Diff. Equa., 2009, 25: 990–1008.

    MathSciNet  Google Scholar 

  15. J. H. Liu and Q. D. Zhu, Pointwise supercloseness of pentahedral finite elements, Numer. Meth. Part. Diff. Equa., 2010, 26: 1572–1580.

    MathSciNet  MATH  Google Scholar 

  16. J. H. Liu and Q. D. Zhu, The estimate for the W 1,1-seminorm of discrete derivative Green’s function in three dimensions, J. Hunan Univ. Art. Sci., 2004, 16: 1–3 (in Chinese).

    MATH  Google Scholar 

  17. A. Pehlivanov, Superconvergence of the gradient for quadratic 3D simplex finite elements, Proceedings of the Conference on Numerical Methods and Application, Bulgarian Academy of Sciences, Sofia, 1989: 362–366.

    Google Scholar 

  18. A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 1996, 33: 505–521.

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. M. Zhang and R. C. Lin, Locating natural superconvergent points of finite element methods in 3D, Inter. J. Numer. Anal. Model., 2005, 2: 19–30.

    MathSciNet  MATH  Google Scholar 

  20. M. Zlámal, Superconvergence and reduced integration in the finite element method, Math. Comp., 1978, 32: 663–685.

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. D. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Methods, Hunan Science and Technology Press, Changsha, 1989 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Liu.

Additional information

This research is supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y6090131 and the Natural Science Foundation of Ningbo City under Grant No. 2010A610101.

This paper was recommended for publication by Editor Ningning YAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Deng, Y. & Zhu, Q. High accuracy analysis of tensor-product linear pentahedral finite elements for variable coefficient elliptic equations. J Syst Sci Complex 25, 410–416 (2012). https://doi.org/10.1007/s11424-011-0045-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-011-0045-6

Key words

Navigation