Skip to main content

Advertisement

Log in

Model-based learning: a synthesis of theory and research

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

This article provides a review of theoretical approaches to model-based learning and related research. In accordance with the definition of model-based learning as an acquisition and utilization of mental models by learners, the first section centers on mental model theory. In accordance with epistemology of modeling the issues of semantics, ontology, and learning with models as well as structural aspects and functions of mental models (such as simplification, idealization, analogy, simulation) will be discussed. Starting with early theoretical approaches in the realm of cognitive science, the emphasis will be on recent theoretical developments in the field of reinforcement learning that distinguish between model-based and model-free learning. These new theoretical approaches confirm, to a large extent, the early theories of mental models but they also contribute new insights in age-related aspects of model-based learning. The second main section of the article provides a review of basic and applied research on model-based learning. A short overview of basic research on mental models aims at sketching an “overall picture” followed by a more detailed description and discussion of findings in the field of instructional research, especially with regard to K-12 STEM education and the support of model-based learning through teaching and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abebe, S., & Davis, W. (2004). Transcendence in the public schools: The teacher as moral model. Journal of College and Character. doi:10.2202/1940-1639.1389.

    Google Scholar 

  • Adams, W. K., et al. (2008). A study of educational simulations Part I—engagement and learning. Journal of Interactive Learning Research, 19(3), 397–419.

    Google Scholar 

  • Allard-Poesi, F. (1998). Representations and influence processes in groups: Towards a socio-cognitive perspective on cognition in organization. Scandinavian Journal of Management, 14(4), 395–420.

    Article  Google Scholar 

  • Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85(4), 249–277.

    Article  Google Scholar 

  • Anzai, Y., & Yokoyama, T. (1984). Internal models in physics problem solving. Cognition and Instruction, 1, 397–450.

    Article  Google Scholar 

  • Appelbaum, L. G., et al. (2014). The dynamics of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive Neuroscience, 26(5), 1021–1038.

    Article  Google Scholar 

  • Azevedo, R., et al. (2011). Adaptive content and process scaffolding: A key to facilitating students’ self-regulated learning with hypermedia. Psychological Test and Assessment Modeling, 53(1), 106–140.

    Google Scholar 

  • Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Bandura, A., Ross, D., & Ross, S. A. (1961). Transmission of aggression through imitation of aggressive models. Journal of Abnormal and Social Psychology, 63(3), 575–582.

    Article  Google Scholar 

  • Barab, S. A., et al. (2000). Virtual solar system project: Building understanding through model building. The Journal of the Learning Sciences, 37(7), 719–756.

    Google Scholar 

  • Bayman, P., & Mayer, R. E. (1988). Using conceptual models to teach BASIC computer programming. Journal of Educational Psychology, 80, 291–298.

    Article  Google Scholar 

  • Benbassat, J. (2014). Role modeling in medical education: The importance of a reflective imitation. Academic Medicine, 89(4), 550–554.

    Article  Google Scholar 

  • Berland, L., & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.

    Article  Google Scholar 

  • Betsch, T., & Fiedler, K. (1999). Understanding conjunction effects in probability judgment: The role of implicit mental models. European Journal of Social Psychology, 29, 75–93.

    Article  Google Scholar 

  • Bjønness, B., & Kolstø, S. D. (2015). Scaffolding open inquiry: How a teacher provides students with structure and space. Nordic Studies in Science Education, 11(3), 223–237.

    Google Scholar 

  • Boerger, M. A., & Henley, T. B. (1999). The use of analogy in giving instructions. The Psychological Record, 49(2), 193–209.

    Article  Google Scholar 

  • Bowen, B., & Deluca, W. (2015). Comparing traditional versus alternative sequencing of instruction when using simulation modeling. Journal of STEM Education, 16(1), 5–10.

    Google Scholar 

  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.

    Article  Google Scholar 

  • Breakwell, G. M. (2001). Mental models and social representations of hazards: The significance of identity processes. Journal of Risk Research, 4, 341–351.

    Article  Google Scholar 

  • Brewer, W. F. (1987). Schemas versus mental models in human memory. In P. Morris (Ed.), Modelling cognition (pp. 187–197). Chichester, UK: Wiley.

    Google Scholar 

  • Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics: Factors influencing conceptual change. Journal of Research in Science Teaching, 29, 17–34.

    Article  Google Scholar 

  • Bruner, J. S. (1975). From communication to language: A psychological perspective. Cognition, 3, 255–287.

    Article  Google Scholar 

  • Bryce, C. M., et al. (2016). Exploring models in the biology classroom. The American Biology Teacher, 78(1), 35–42.

    Article  Google Scholar 

  • Bu, L., & Hohenwarter, M. (2015). Modeling for dynamic mathematics. Toward technology-integrated aesthetic experiences in school mathematics. In X. Ge, D. Ifenthaler & J.M. Spector (Eds.), Emerging technologies for STEAM education. Full steam ahead (pp. 355–381). Cham: Springer.

  • Bucciarelli, M., & Daniele, M. (2015). Reasoning in moral conflicts. Thinking & Reasoning, 21(3), 265–294.

    Article  Google Scholar 

  • Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895–935.

    Article  Google Scholar 

  • Buckley, B. C. (2012a). Model-based learning. In N. M. Seel (Ed.), Enclopedia of the sciences of learning (Vol. 5, pp. 2300–2303). New York: Springer.

    Google Scholar 

  • Buckley, B. C. (2012b). Model-based teaching. In N. M. Seel (Ed.), Enclopedia of the sciences of learning (Vol. 5, pp. 2312–2315). New York: Springer.

    Google Scholar 

  • Buckley, B. C., et al. (2004). Model-based teaching and learning with BioLogica™: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23–41.

    Article  Google Scholar 

  • Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98, 182–197.

    Article  Google Scholar 

  • Campbell, T., et al. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science & Technology Education, 11(1), 159–176.

    Google Scholar 

  • Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer programming. International Journal of Human-Computer Studies, 40(5), 795–811.

    Article  Google Scholar 

  • Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73–94.

    Google Scholar 

  • Chang, H. Y., Quintana, C., & Krajcik, J. (2014). Using drawing technology to assess students’ visualizations of chemical reaction processes. Journal of Science Education and Technology, 23(3), 355–369.

    Article  Google Scholar 

  • Chappell, P. (2012). A socio-cultural account of the role of imitation in instructed second language learning. Journal of Linguistics and Language Teaching, 3(1), 61–91.

    Google Scholar 

  • Cheng, M. F., et al. (2014). Developing explanatory models of magnetic phenomena through model-based inquiry. Journal of Baltic Science Education, 13(3), 351–360.

    Google Scholar 

  • Chiou, G. L., & Anderson, O. R. (2010). A study of undergraduate students understanding of heat conduction based on mental model theory and an ontology-process analysis. Science Education, 94(5), 825–854.

    Article  Google Scholar 

  • Chiu, M. H., & Lin, J. W. (2002). Using multiple analogies for investigating fourth graders’ conceptual change in electricity. Chinese Journal of Research in Science Education, 10, 109–134.

    Google Scholar 

  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students´ preconceptions in physics. Journal of Research in Science Teaching, 30, 1241–1257.

    Article  Google Scholar 

  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053.

    Article  Google Scholar 

  • Clement, J. J., & Steinberg, M. S. (2002). Step-wise evolution of mental models of electric circuits: A “learning-aloud” case study. The Journal of the Learning Sciences, 11(4), 389–452.

    Article  Google Scholar 

  • Clement, J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht, NL: Springer.

    Book  Google Scholar 

  • Cook, M. (2011). Teachers’ use of visual representations in the science classroom. Science Education International, 22(3), 175–184.

    Google Scholar 

  • Cook, D. A., et al. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 35, e867–e898.

    Article  Google Scholar 

  • Corpuz, E. D., & Rebello, N. S. (2011). Investigating students’ mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development. Physical Review Special Topics–Physics Education Research. doi:10.1103/PhysRevSTPER.7.020103.

    Google Scholar 

  • Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13(9), 636–650.

    Article  Google Scholar 

  • Crone, E. A., et al. (2008). Neural mechanisms supporting flexible performance adjustment during development. Cognitive, Affective, and Behavioral Neuroscience, 8(2), 165–177.

    Article  Google Scholar 

  • D’Angelo, C., et al. (2013). Review of computer-based simulations for STEM learning in K-12 education. Menlo Park, CA: SRI International.

    Google Scholar 

  • Darabi, A. A., Nelson, D. W., & Seel, N. M. (2009). Progression of mental models throughout the phases of a computer-based instructional simulation: Supportive information, practice, and performance. Computers in Human Behavior, 25(3), 723–730.

    Article  Google Scholar 

  • Dass, K., Head, M. L., & Rushton, G. T. (2015). Building an understanding of how model-based inquiry is implemented in the high school chemistry classroom. Journal of Chemical Education Research, 92(8), 1306–1314.

    Article  Google Scholar 

  • Davies, J., Nersessian, N. J., & Goel, A. K. (2005). Visual models in analogical problem solving. Foundations of Science, 10, 133–152.

    Article  Google Scholar 

  • Daw, N. D., et al. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.

    Article  Google Scholar 

  • DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). Measuring shared team mental models: A meta-analysis. Group Dynamics, 14(1), 1–14.

    Article  Google Scholar 

  • Decker, J. H., et al. (2016). From creatures of habit to goal-directed learners. Tracking the developmental emergence of model-based reinforcement learning. Psychological Science, 15(2016), 0956797616639301.

    Google Scholar 

  • Dede, C., et al. (1999). Multisensory immersion as a modeling environment for learning complex scientific concepts. In W. Feurzeig & N. Roberts (Eds.), Computer modeling and simulation in science education (pp. 282–319). New York: Springer.

    Chapter  Google Scholar 

  • Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology, 22, 1075–1081.

    Article  Google Scholar 

  • Dolphin, G., & Benoit, W. (2016). Students’ mental model development during historically contextualized inquiry: How the “Tectonic Plate” metaphor impeded the process. International Journal of Science Education, 38(2), 276–297.

    Article  Google Scholar 

  • Domangue, T. J., et al. (2004). Effects of model-based and memory-based processing on speed and accuracy of grammar string generation. Journal of Experimental Psychology, 30(5), 1002–1011.

    Google Scholar 

  • Dori, Y. J., & Barak, M. (2001). Virtual and physical molecular modeling: Fostering model perception and spatial understanding. Educational Technology & Society, 4(1), 61–74.

    Google Scholar 

  • Economides, M., et al. (2015). Model-based reasoning in humans becomes automatic with training. PLoS Computational Biolology, 11(9), e1004463. doi:10.1371/journal.pcbi.1004463.

    Article  Google Scholar 

  • Edsall, R., & Wentz, E. (2007). Comparing strategies for presenting concepts in introductory undergraduate geography: Physical models vs. computer visualization. Journal of Geography in Higher Education, 31(3), 427–444.

    Article  Google Scholar 

  • Ehrlén, K. (2008). Children’s understanding of globes as a model of the earth: A problem of contextualizing. International Journal of Science Education, 30(2), 221–238.

    Article  Google Scholar 

  • Eppinger, B., Walter, M., Heekeren, H. R., & Li, S.-C. (2013). Of goals and habits: Age-related and individual differences in goal-directed decision-making. Frontiers in Neuroscience. doi:10.3389/fnins.2013.00253.

    Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to Xppaut for researchers and students. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Evans, J. S. B. T. (1993). The mental model theory of conditional reasoning: Critical reappraisal and revision. Cognition, 48, 1–20.

    Article  Google Scholar 

  • Farrar, K. M., Krcmar, M., & Nowak, K. L. (2006). Contextual features of violent video games, mental models, and aggression. Journal of Communication, 56(2), 387–405.

    Article  Google Scholar 

  • Feng, C. H. (2012). Analyzing the effect of modeling-oriented inquiry model on 8th grade students’ ability to identify the elements of scientific inquiry. Secondary Education, 63(1), 38–60.

    Google Scholar 

  • Fiore, S. M., Cuevas, H. M., & Oser, R. L. (2003). A picture is worth a thousand connections: The facilitative effects of diagrams on mental model development and task performance. Computers in Human Behavior, 19, 185–199.

    Article  Google Scholar 

  • Ford, B., & Hall, G. G. (1970). Model building—an educational philosophy for applied mathematics. International Journal of Mathematical Education in Science and Technology, 1(1), 77–83.

    Article  Google Scholar 

  • Forstmann, B. U., & Wagenmakers, E.-J. (Eds.). (2015). An introduction to model-based cognitive neuroscience. New York: Springer.

    Google Scholar 

  • Fretz, E. B., et al. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567–589.

    Article  Google Scholar 

  • Freudenthal, H. (Ed.). (1961). The concept and the role of the model in mathematics and natural and social sciences. Dordrecht: Reidel.

    Google Scholar 

  • Frick, A., Daum, M. M., Wilson, M., & Wilkening, F. (2009). Effects of actions on children’s and adults’ mental imagery. Journal of Experimental Child Psychology, 104, 34–51.

    Article  Google Scholar 

  • Frigg, R., & Hartmann, S. (2006). Scientific models. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science. An encyclopedia (Vol. 2, pp. 740–749). New York: Routledge.

  • Furtak, E. M., et al. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329.

    Article  Google Scholar 

  • Gentner, D. (1983). Structure mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.

    Article  Google Scholar 

  • Gilbert, N. (2008). Agent-based models. Los Angeles, CA: Sage.

    Book  Google Scholar 

  • Gilbert, J. K., & Justi, R. (2016). Modeling-based teaching in science education. Cham: Springer Nature.

    Google Scholar 

  • Gilbert, J. K., Reiner, M., & Nakhlel, M. (Eds.). (2008). Visualization: Theory and practice in science education. New York, NY: Springer.

    Google Scholar 

  • Gilbert, J. K., & Rogers, W. A. (1999). Age-related differences in the acquisition, utilization, and extension of a spatial mental model. Journal of Gerontology, 54B(4), 246–255.

    Article  Google Scholar 

  • Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist (2nd ed.). Maidenhead, UK: Open University Press.

    Google Scholar 

  • Gillan, C. M., et al. (2015). Model-based learning protects against forming habits. Cognitive, Affective, and Behavioral Neuroscience, 15(3), 523–536.

    Article  Google Scholar 

  • Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4), 585–595.

    Article  Google Scholar 

  • Glaser, R. (1990). The reemergence of learning theory within instructional research. American Psychologist, 45(1), 29–39.

    Article  Google Scholar 

  • Glynn, S. M. (1997). Drawing mental models. The Science Teacher, 64(1), 30–32.

    Google Scholar 

  • Glynn, S. M. (2008). Making science concepts meaningful to students: teaching with analogies. In S. Mikelskis-Seifert, U. Ringelband, & M. Brückmann (Eds.), Four decades of research in science education: From curriculum development to quality improvement (pp. 113–125). Münster, Germany: Waxmann.

    Google Scholar 

  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891–894.

    Article  Google Scholar 

  • Gobert, J. D., & Pallant, A. (2004). Fostering students’ epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13(1), 7–22.

    Article  Google Scholar 

  • Gobert, J. D., et al. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653–684.

    Article  Google Scholar 

  • Gopnik, A., Griffiths, T. L., & Lucas, C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. Current Directions in Psychological Science, 24, 87–92.

    Article  Google Scholar 

  • Gould, H., Tobochnik, J., & Christian, W. (2007). An introduction to computer simulation methods. Applications to physical systems (3rd ed.). Boston, MA: Addison-Wesley.

    Google Scholar 

  • Gray, S. H. (1990). Using protocol analyses and drawings to study mental model construction during hypertext navigation. International Journal of Human Computer Interaction, 2, 359–378.

    Article  Google Scholar 

  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1–11.

    Article  Google Scholar 

  • Greeno, J. G. (1989). Situations, mental models, and generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information processing (pp. 285–318). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Grenier, R. S., & Dudzinska-Przesmitzki, D. (2015). A conceptual model for eliciting mental models using a composite methodology. Human Resource Development Review, 14(2), 163–184.

    Article  Google Scholar 

  • Gu, X., & Blackmore, K. L. (2015). A systematic review of agent-based modelling and simulation applications in the higher education domain. Higher Education Research & Development, 34(5), 883–898.

    Article  Google Scholar 

  • Gubitzer, L. (2012). The 5-sector model of the economy. Vienna, Austria: University of Vienna.

    Google Scholar 

  • Guerra-Ramos, M. T. (2011). Analogies as tools for meaning making in elementary science education: How do they work in classroom settings? Eurasia Journal of Mathematics, Science & Technology Education, 7(1), 29–39.

    Google Scholar 

  • Gustafsson, J. E., & Peterson, M. (2012). A computer simulation of the argument from disagreement. Synthesis, 184, 405–487.

    Google Scholar 

  • Haider, S.I., Snead, D.R., & Bari, M.F. (2016). Medical students’ perceptions of clinical teachers as role model. PLoS ONE, 9 (11), Article 3:e0150478.

  • Hale-Hanes, C. (2015). Promoting student development of models and scientific inquiry skills in acid–base chemistry: An important skill development in preparation for AP chemistry. Journal of Chemical Education, 92(8), 1320–1324.

    Article  Google Scholar 

  • Hannafin, R. D., & Scott, B. N. (2001). Teaching and learning with dynamic geometry programs in student-centered learning environments. Computers in the Schools, 17(1), 121–141.

    Article  Google Scholar 

  • Harris, O. J., & Hartman, S. J. (2002). Organizational behavior. Binghamton, NY: Haworth Press.

    Google Scholar 

  • Harris, C. J., & Rooks, D. L. (2010). Managing inquiry-based science: Challenges in enacting complex science instruction in elementary and middle school classrooms. Journal of Science Teacher Education, 21, 227–240.

    Article  Google Scholar 

  • Hart, D., & Fegley, S. (1994). Social imitation and the emergence of a mental model of self. In S. T. Parker, R. W. Mitchell, & M. L. Boccia (Eds.), Self-awareness in animals and humans: Developmental perspectives (pp. 149–165). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Heidig, S., & Clarebout, G. (2011). Do pedagogical agents make a difference to student motivation and learning? Educational Research Review, 6(1), 27–54.

    Article  Google Scholar 

  • Henderson, L., & Tallman, J. (2006). Stimulated recall and mental models. Lanham, ML: Scarecrow Press Inc.

    Google Scholar 

  • Henning, J. E. (2008). The art of discussion-based teaching. Opening up conversation in the classroom. New York: Routledge.

    Google Scholar 

  • Hernández, M. I., Couso, D., & Pintó, R. (2015). Analyzing students’ learning progressions throughout a teaching sequence on acoustic properties of materials with a model-based inquiry approach. Journal of Science Education and Technology, 24(2–3), 356–377.

    Article  Google Scholar 

  • Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60(8), 732–748.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.

    Article  Google Scholar 

  • Hogan, K. (1999). Think aloud together: A test of an intervention to foster students’ collaborative scientific reasoning. Journal of Research in Science Teaching, 36(10), 1085–1109.

    Article  Google Scholar 

  • Hogan, K., Nastasi, B. K., & Pressley, M. (2000). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379–432.

    Article  Google Scholar 

  • Hogan, K., & Pressley, M. (1997). Scaffolding student learning: Instructional approaches and issues. Cambridge, MA: Brookline Books.

    Google Scholar 

  • Hokayem, H., & Schwarz, C. (2014). Engaging fifth graders in scientific modeling to learn about evaporation and condensation. International Journal of Science and Mathematics Education, 12(1), 49–72.

    Article  Google Scholar 

  • Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Analogy in creative thought. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Ifenthaler, D., Pirnay-Dummer, P. N., & Spector, J. M. (Eds.). (2008). Understanding models for learning and instruction. Essays in honor of Norbert M. Seel. New York: Springer.

    Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks: Illuminating the probability of change. Learning and Instruction, 21(4), 538–549.

    Article  Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2013). Model-based reasoning. Computers & Education, 64, 131–142.

    Article  Google Scholar 

  • Ingersoll, B., & Schreibman, L. (2006). Teaching reciprocal imitation skills to young children with autism using a naturalistic behavioral approach: Effects on language, pretend play, and joint attention. Journal of Autism and Development Disorders, 36(4), 487–505.

    Article  Google Scholar 

  • Jeong, H., & Chi, M. T. H. (2007). Knowledge convergence and collaborative learning. Instructional Science, 35, 287–315.

    Article  Google Scholar 

  • Jin, H., et al. (2016). Promoting cognitive and social aspects of inquiry through classroom discourse. International Journal of Science Education, 38(2), 319–343.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 469–499). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1995). Mental models, deductive reasoning, and the brain. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 999–1008). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Johnson-Laird, P. N. (2004). The history of mental models. In K. Manktelow & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 179–212). New York: Psychology Press.

    Google Scholar 

  • Johnson-Laird, P. N. (2006). How we reason. New York: Oxford University Press.

    Google Scholar 

  • Jones, N. A., et al. (2011). Mental models: An interdisciplinary synthesis of theory and methods. Ecology and Society, 16(1), 46–46.

    Article  Google Scholar 

  • Jones, R. M., et al. (2014). Adolescent-specific patterns of behavior and neural activity during social reinforcement learning. Cognitive, Affective and Behavioral Neuroscience, 14(2), 683–697.

    Article  Google Scholar 

  • Jonides, J., Nee, D. E., & Berman, M. G. (2006). What has functional neuroimaging told us about the mind? So many examples, so little space. Cortex, 42, 414–427.

    Article  Google Scholar 

  • Kanno, T., Furuta, K., & Kitahara, Y. (2010). A model of team cognition based on mutual beliefs. Theoretical Issues in Ergonomics Science, 14(1), 38–52.

    Article  Google Scholar 

  • Keen, S. (1995). Finance and economic breakdown: Modelling minsky’s financial instability hypothesis. Journal of Post Keynesian Economics, 17(4), 607–635.

    Article  Google Scholar 

  • Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teacing, 40(9), 898–921.

    Article  Google Scholar 

  • Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive Science, 8, 255–273.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Knauff, M., et al. (2003). Reasoning, models, and images: Behavioral measures and cortical activity. Journal of Cognitive Neuroscience, 4, 559–573.

    Article  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(14), 1181–1185.

    Article  Google Scholar 

  • Kontogeorgiou, A. M., Bellou, J., & Mikropoulos, T. A. (2008). Being inside the quantum atom. PsychNology Journal, 6(1), 85–101.

    Google Scholar 

  • Kopainsky, B., & Alessi, S. M. (2015). Effects of structural transparency in system dynamics simulators on performance and understanding. Systems, 3, 152–176.

    Article  Google Scholar 

  • Kopainsky, B., et al. (2015). Effects of prior exploration as an instructional strategy for systems dynamics. Simulation Gaming, 46(3–4), 293–321.

    Article  Google Scholar 

  • Krämer, N., & Bente, G. (2010). Personalizing e-Learning. The social effects of pedagogical agents. Educational Psychology Review, 22, 71–87.

    Article  Google Scholar 

  • Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91(5), 710–726.

    Article  Google Scholar 

  • Kurland, D. M., & Pea, R. D. (1985). Children´s mental models of recursive logo programs. Journal of Educational Computing Research, 1(2), 235–243.

    Article  Google Scholar 

  • Landriscina, F. (2013). Simulation and learning: A model-centered approach. New York: Springer.

    Book  Google Scholar 

  • Lane, S. M., et al. (2008). Facilitative interactions of model- and experience-based processes: Implications for type and flexibility of representation. Memory & Cognition, 36(1), 157–169.

    Article  Google Scholar 

  • Larson, K. G., Long, G. R., & Briggs, M. W. (2012). Periodic properties and inquiry: Student mental models observed during a periodic table puzzle activity. Chemical Education Research, 89(12), 1491–1498.

    Google Scholar 

  • Lee, J. (2015). Analysis of the refinement of shared mental models in science-gifted students’ collaborative problem solving process. Journal of the Korean Association for Science Education, 35(6), 1049–1062.

    Article  Google Scholar 

  • Lee, J., & Kim, J. B. (2013). What is shared in collaborative problem solving process of scientific gifted students? Journal of Gifted/Talented Education, 23(6), 1099–1115.

    Article  Google Scholar 

  • Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81(3), 687–699.

    Article  Google Scholar 

  • Lee, K., et al. (2015). MATLAB-based teaching modules in Biochemical engineering. Chemical Engineering Education, 49(2), 85–87.

    Google Scholar 

  • Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms. Perspectives on discourse, tools, and instructional design (pp. 361–383). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Liebrand, W. B. G., Nowak, A., & Hegselmann, R. (Eds.). (1998). Computer modeling of social processes. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Lim, B. R. (2004). Challenges and issues in designing inquiry on the web. British Journal of Educational Technology, 35(5), 627–643.

    Article  Google Scholar 

  • Lim, B. C., & Klein, K. J. (2006). Team mental models and team performance: A field study of the effects of team mental model on similarity and accuracy. Journal of Organizational Behavior, 27, 403–418.

    Article  Google Scholar 

  • Linn, M. C. (2000). Designing the knowledge integration environment: The partnership inquiry process. International Journal of Science Education, 22(8), 781–796.

    Article  Google Scholar 

  • Mahon, B. Z., & Cantlon, J. F. (2011). The specialization of function: Cognitive and neural perspectives. Cognitive Neuropsychology, 28, 147–155.

    Article  Google Scholar 

  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630.

    Article  Google Scholar 

  • Markman, A. B. (1998). Knowledge representation. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Mathieu, J. E., et al. (2000). The influence of shared mental models on team process and performance. Journal of Applied Psychology, 85(2), 273–283.

    Article  Google Scholar 

  • Matteson, M. L. (2010). The impact of group interaction on shared cognition: An analysis of small group communication. Advances in Library Administration and Organization, 29, 37–106.

    Article  Google Scholar 

  • Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59(1), 43–64.

    Article  Google Scholar 

  • Maynard, M. T., & Gilson, L. L. (2013). The role of shared mental model development in understanding virtual team effectiveness. Group Organization Management, 39(1), 3–32.

    Article  Google Scholar 

  • McGloin, R., et al. (2016). Modeling outcomes of violent video game play: Applying mental models and model matching to explain the relationship between user differences, game characteristics, enjoyment, and aggressive intentions. Computers in Human Behavior, 62, 442–451.

    Article  Google Scholar 

  • McGrath, D., et al. (2010). Student experiences of virtual reality: A case study in learning special relativity. American Journal of Physics, 78(8), 862–868.

    Article  Google Scholar 

  • McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53–78.

    Article  Google Scholar 

  • Merchant, Z., et al. (2014). Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29–40.

    Article  Google Scholar 

  • Milrad, M., Spector, J. M., & Davidsen, P. I. (2002). Model facilitated learning. In S. Naidu (Ed.), Learning and teaching with technology: Principles and practices (pp. 13–27). London: Kogan Page.

    Google Scholar 

  • Minsky, M. L. (1965). Matter, mind and models. Proceedings of the International Federation of Information Processing Congress, 1, 45–49.

    Google Scholar 

  • Mulder, Y., Bollen, L., de Jong, T., & Lazonder, A. W. (2016). Scaffolding learning by modeling: The effects of partially worked out models. Journal of Research in Science Teaching, 53, 502–523.

    Article  Google Scholar 

  • Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2011). Comparing two types of model progression in an inquiry learning environment with modelling facilities. Learning and Instruction, 21, 614–624.

    Article  Google Scholar 

  • Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2014). Using heuristic worked examples to promote inquiry-based learning. Learning and Instruction, 29, 56–64.

    Article  Google Scholar 

  • Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2015). Simulation-based inquiry learning and computer modeling. Simulation Gaming, 46(3–4), 322–347.

    Article  Google Scholar 

  • National Research Council. (2011). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

    Google Scholar 

  • Nielsen, M., Simcock, G., & Jenkins, L. (2008). The effect of social engagement on 24-month-olds’ imitation from live and televised models. Developmental Science, 11(5), 722–731.

    Article  Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Orban de Xivry, J. J., & Ethier, V. (2008). Neural correlates of internal models. The Journal of Neuroscience, 28(32), 7931–7932.

    Article  Google Scholar 

  • Orgill, M., & Bodner, G. (2004). What research tells us about using analogies to teach chemistry. Chemistry Education, 5(1), 15–32.

    Google Scholar 

  • Otto, A. R., et al. (2013). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20941–20946.

    Article  Google Scholar 

  • Over, H., & Carpenter, M. (2012). Putting the social into social learning: Explaining both selectivity and fidelity in children’s copying behavior. Journal of Comparative Psychology, 126(2), 182–192.

    Article  Google Scholar 

  • Park, S. K. (2016). Exploring the argumentation pattern in modeling-based learning about apparent motion of Mars. Eurasia Journal of Mathematics, Science & Technology Education, 12(1), 87–107.

    Google Scholar 

  • Passmore, C. M., Stewart, J., & Cartier, J. (2009). Model-based inquiry and school science: Creating connections. School Science and Mathematics, 109(7), 394–402.

    Article  Google Scholar 

  • Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535–1554.

    Article  Google Scholar 

  • Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125–143.

    Article  Google Scholar 

  • Plummer, J. D., et al. (2015). Development of a learning progression for the formation of the solar system. International Journal of Science Education, 37(9), 1381–1401.

    Article  Google Scholar 

  • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.

    Article  Google Scholar 

  • Puntambekar, S., & Hübscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1–12.

    Article  Google Scholar 

  • Radvansky, G. A., Zacks, R. T., & Hasher, K. (1996). Fact retrieval in younger and older adults: The role of mental models. Psychology and Aging, 11(2), 258–271.

    Article  Google Scholar 

  • Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193.

    Article  Google Scholar 

  • Rapp, D. N. (2005). Mental models: Theoretical issues for visualizations in science education. In J. K. Gilbert (Ed.), Visualization in science education (pp. 43–60). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rauh, R., et al. (2005). Preferred and alternative mental models in spatial reasoning. Spatial Cognition and Computation, 5, 239–269.

    Article  Google Scholar 

  • Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, televisions and New media like real people and places. New York: Cambridge University Press.

    Google Scholar 

  • Richland, L. E., & McDonough, I. M. (2010). Learning by analogy: Discriminating between potential analogs. Contemporary Educational Psychology, 35, 28–43.

    Article  Google Scholar 

  • Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249–271.

    Article  Google Scholar 

  • Riley, D. (1990). Learning about systems by making models. Computers in Education, 13(1–3), 255–263.

    Article  Google Scholar 

  • Rosenshine, B. (2012). Principles of instruction. Research-based strategies that all teachers should know. American Educator, 39, 12–19.

    Google Scholar 

  • Roskos-Ewoldsen, B., Davies, J., & Roskos-Ewoldsen, D. R. (2004). Implications of the mental models approach for cultivation theory. Communications, 29(3), 345–363.

    Article  Google Scholar 

  • Rumelhart, D.E., Smolensky, P., McClelland, J.L., & Hinton, G.E. (1986). Schemata and sequential thought processes in PDP models. In J.L. McClelland, D.E. Rumelhart, & The PDP research group (Eds.), Parallel distributed processing. Explorations in the microstructure of cognition. Psychological and biological models (Vol 2, pp. 7–57). Cambridge, MA: MIT Press.

  • Ryoo, K. L., & Linn, M. C. (2013). Designing guidance for interpreting dynamic visualizations: Generating versus reading explanations. Journal of Research in Science Teaching, 48(2), 147–174.

    Google Scholar 

  • Sanderse, W. (2013). The meaning of role modeling in moral and character education. Journal of Moral Education, 42(1), 28–42.

    Article  Google Scholar 

  • Sandoval, W., & Reiser, B. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.

    Article  Google Scholar 

  • Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students’ conceptions about diffusion and osmosis? The American Biology Teacher, 63(2), 104–109.

    Article  Google Scholar 

  • Santos, C. M., Passos, A. M., & Uitdewilligen, S. (2016). When shared cognition leads to closed minds: Temporal mental models, team learning, adaptation and performance. European Management Journal, 34(3), 258–268.

    Article  Google Scholar 

  • Scalise, K., et al. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078.

    Article  Google Scholar 

  • Schichl, H. (2003). Models and the history of moedling. In H. Kallrath (Ed.), Modeling languages in mathematical optimization (pp. 25–36). Boston, MA: Kluwer.

    Google Scholar 

  • Schroeder, N. L., & Adesope, O. O. (2014). A systematic review of pedagogical agents’ persona, motivation, and cognitive load implications for learners. Journal of Research on Technology in Education, 46(3), 229–251.

    Article  Google Scholar 

  • Schuitema, J., ten Dam, G., & Veugelers, W. (2008). Teaching strateges for moral education: A review. Journal of Curriculum Studies, 40(1), 69–89.

    Article  Google Scholar 

  • Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-9 science teaching. Science Education, 91(1), 158–186.

    Article  Google Scholar 

  • Schwarz, C. V., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.

    Article  Google Scholar 

  • Seel, N.M. (1991). Weltwissen und mental Modelle. Göttingen: Hogrefe [World knowledge and mental models].

  • Seel, N. M. (1995). Mental models, knowledge transfer, and teaching strategies. Journal of Structural Learning and Intelligent Systems, 12(3), 197–213.

    Google Scholar 

  • Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.

    Google Scholar 

  • Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition, and Learning, 1(1), 59–85.

    Google Scholar 

  • Seel, N. M. (2014). Model-based learning and performance. In J. M. Spector et al. (Eds.), Handbook of research in educational communication and technology (4th ed., pp. 465–484). New York: Springer.

    Chapter  Google Scholar 

  • Seel, N. M., Al-Diban, S., & Blumschein, P. (2000). Mental models and instructional planning. In M. Spector & T. M. Anderson (Eds.), Integrated and holistic perspectives on learning, instruction and technology: Understanding Complexity (pp. 129–158). Dordrecht, NL: Kluwer.

    Google Scholar 

  • Seel, N. M., Darabi, A. A., & Nelson, D. W. (2006). A dynamic mental model approach to examine schema development in performing a complex troubleshooting task: Retention of mental models. Technology, Instruction, Cognition and Learning, 4, 309–329.

    Google Scholar 

  • Seel, N. M., & Dinter, F. R. (1995). Instruction and mental model progression: Learner-dependent effects of teaching strategies on knowledge acquisition and anlogical transfer. Educational Research and Evaluation, 1(1), 4–35.

    Article  Google Scholar 

  • Seeliger, R. (1948). Analogien und Modelle in der Physikdidaktik. Studium Generale, 1 (3), 125–137. [Analogies and models in physics didactics].

  • Sein, M. K., & Bostrom, R. P. (1989). Individual differences and conceptual models in training novice users. Human-Computer Interaction, 4, 197–229.

    Article  Google Scholar 

  • Sharp, D. L. M., et al. (1995). Dynamic visual support for story comprehension and mental model building by young, at-risk children. Educational Technology Research and Development, 43(4), 25–42.

    Article  Google Scholar 

  • Sharp, M. E., et al. (2016). Dopamine selectively remediates ‘model-based’ reward learning: A computational approach. Brain, 139, 355–364.

    Article  Google Scholar 

  • Shih, Y.-F., & Alessi, S. M. (1993). Mental models and transfer of learning in computer programming. Journal of Research on Computing in Education, 26(2), 154–175.

    Article  Google Scholar 

  • Shirehjini, A. A. N., et al. (2016). Mental model development using collaborative 3D virtual environments. In N. Streitz & P. Markopoulos (Eds.), Distributed, ambient and pervasive interactions (pp. 279–290). Cham: Springer.

    Chapter  Google Scholar 

  • Skatova, A., Chan, P. A., & Daw, N. D. (2013). Extraversion differentiates between model-based and model-free strategies in a reinforcement learning task. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2013.00525.

    Google Scholar 

  • Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119, 3–22.

    Article  Google Scholar 

  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.

    Article  Google Scholar 

  • Smith, C., Snir, J., & Grosslight, L. (1992). Using conceptual models to facilitate conceptual change: The case of weight-density differentiation. Cognition and Instruction, 3, 221–283.

    Article  Google Scholar 

  • Sokolowski, J. A., & Banks, C. M. (2009). Principles of modeling and simulation. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Spezzini, S. (2010). Effects of visual analogies on learner outcomes: Bridging from the known to the unknown, International Journal for the Scholarship of Teaching and Learning, 4 (2), Article 11.

  • Stavy, R. (2006). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28, 305–313.

    Article  Google Scholar 

  • Steinbuch, K. (1961). Automat und Mensch. Über menschliche und maschinelle Intelligenz. Berlin: Springer.

    Google Scholar 

  • Strevens, M. (2013). No understanding without explanation. Studies in History and Philosophy of Science, 44, 510–515.

    Article  Google Scholar 

  • Stull, A. T., Barrett, T., & Hegarty, M. (2013). Usability of concrete and virtual models in chemistry instruction. Computers in Human Behavior, 29(6), 2546–2556.

    Article  Google Scholar 

  • Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509–527.

    Article  Google Scholar 

  • Stull, A. T., et al. (2016). Promoting representational competence with molecular models in organic chemistry. Journal of Chemical Education, 93(6), 994–1001.

    Article  Google Scholar 

  • Sun, D., Looi, C.-K., & Xie, W. (2014). Collaborative inquiry with a web-based science learning environment: When teachers enact it differently. Educational Technology & Society, 17(4), 390–403.

    Google Scholar 

  • Supasorn, S. (2015). Grade 12 students’ conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit. Chemistry Education Research and Practice, 16(2), 393–407.

    Article  Google Scholar 

  • Swaak, J., van Joolingen, W. R., & de Jong, T. (1998). Supporting simulation-based learning: the effects of model progression and assignments on definitional and intuitive knowledge. Learning and Instruction, 8, 235–252.

    Article  Google Scholar 

  • Tapiero, I. (2007). Situation models and levels of coherence. Toward a definition of comprehension. New York: Taylor & Francis.

    Google Scholar 

  • Tasker, R., & Dalton, R. (2006). Research into practice: Visualization of the molecular world using animations. Chemistry Education Research and Practice, 7(2), 141–159.

    Article  Google Scholar 

  • Thagard, P. (2010). How brains make mental models. In L. Magnani et al. (Eds.), Model-based reasoning in science and technology (pp. 447–461). Berlin: Springer.

    Chapter  Google Scholar 

  • Thompson-Schill, S. L., Ramscar, M., & Chrysikou, E. G. (2009). Cognition without control: When a little frontal lobe goes a long way. Current Directions in Psychological Science, 18, 259–263.

    Article  Google Scholar 

  • Tien, L. T., Rickey, D., & Stacy, A. M. (1999). The MORE cycle: Guiding students’ thinking in the laboratory. Journal of College Science Teaching, 18(5), 318–324.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 1078–1088.

    Article  Google Scholar 

  • Turchin, P. (2004). Historical dynamics: Why states rise and fall. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tversky, B., Morrison, J., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • Tversky, B., et al. (1994). Spatial mental models from descriptions. Journal of the American Society for Information Science, 45, 656–668.

    Article  Google Scholar 

  • Ugur, G., et al. (2012). The effects of analogy on students’ understanding of direct current circuits and attitudes towards physics lessons. European Journal of Educational Research, 1(3), 211–223.

    Article  Google Scholar 

  • Van Hook, S., & Huziak-Clark, T. (2008). Lift, squeeze, stretch, and twist: Research-based inquiry physics experiences (RIPE) of energy for kindergartners. Journal of Elementary Science Education, 20(3), 1–16.

    Article  Google Scholar 

  • Van Hook, S., et al. (2009). Developing an understanding of inquiry by teachers and graduate student scientists through a collaborative professional development program. Electronic Journal of Science Education, 13(2), 30–61.

    Google Scholar 

  • van Joolingen, W. R., et al. (2015). Understanding elementary astronomy by making drawing-based models. Journal of Science Education and Technology, 24(2), 256–264.

    Article  Google Scholar 

  • van Zee, E., et al. (2001). Student and teacher questioning during conversations about science. Journal of Research in Science Teaching, 38(2), 159–190.

    Article  Google Scholar 

  • Vendetti, M. S., et al. (2015). Analogical reasoning in the classroom: Insights from cognitive science. Mind, Brain, and Education, 9(2), 100–106.

    Article  Google Scholar 

  • Wartofsky, M. W. (1979). Models. Representation and the scientific understanding. Dordrecht: Reidel.

    Google Scholar 

  • Weiss, W., & D’Mello, C. (1997). Fundamentals of model theory. Toronto: University of Toronto.

    Google Scholar 

  • Werhane, P. C., et al. (2011). Social constructivism, mental models, and problems of obedience. Journal of Business Ethics, 100, 103–118.

    Article  Google Scholar 

  • West, M. (2011). Developing high quality data models. Burlington, MA: Morgan Kaufman.

    Google Scholar 

  • White, B., & Frederiksen, J. (1998). Inquiry, modelling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.

    Article  Google Scholar 

  • Wieman, C., & Perkins, K. (2006). A powerful tool for teaching science. Nature Physics, 2, 290–292.

    Article  Google Scholar 

  • Wijnen, F. M., et al. (2015). The potential of learning from erroneous models: Comparing three types of model instruction. System Dynamics Review, 31(4), 250–270.

    Article  Google Scholar 

  • Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners’ modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24(2), 396–415.

    Article  Google Scholar 

  • Williams, E. G., & Clement, J. J. (2014). Identifying multiple levels of discussion-based teaching strategies for constructing scientific models. International Journal of Science Education, 37(1), 82–107.

    Article  Google Scholar 

  • Wilson, J. R., & Rutherford, A. (1989). Mental models: Theory and application in human factors. Human Factors, 31, 617–634.

    Google Scholar 

  • Wimsatt, W. C. (1987). False models as means to truer theories. In M. Nitecki (Ed.), Neutral models in biology (pp. 23–55). London: Oxford University Press.

    Google Scholar 

  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92, 941–967.

    Article  Google Scholar 

  • Wojnowski, B. S., & Pea, C. H. (2014). Models and approaches to STEM professional development. Arlington, VA: National Science Teachers Association.

    Google Scholar 

  • Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–842.

    Article  Google Scholar 

  • Xavier, J., Tilmont, E., & Bonnot, O. (2013). Children’s synchrony and rhythmicity in imitation of peers: Toward a developmental model of empathy. Journal of Physiology-Paris, 107(4), 291–297.

    Article  Google Scholar 

  • Zhang, T., Kaber, D., & Hsiang, S. (2008). Characterisation of mental models in a virtual reality-based multitasking scenario using measures of situation awareness. Theoretical Issues in Ergonomics Science, 11(1–2), 99–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert M. Seel.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seel, N.M. Model-based learning: a synthesis of theory and research. Education Tech Research Dev 65, 931–966 (2017). https://doi.org/10.1007/s11423-016-9507-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-016-9507-9

Keywords

Navigation