Skip to main content
Log in

Composite waves for a cell population system modeling tumor growth and invasion

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In the recent biomechanical theory of cancer growth, solid tumors are considered as liquid-like materials comprising elastic components. In this fluid mechanical view, the expansion ability of a solid tumor into a host tissue is mainly driven by either the cell diffusion constant or the cell division rate, with the latter depending on the local cell density (contact inhibition) or/and on the mechanical stress in the tumor.

For the two by two degenerate parabolic/elliptic reaction-diffusion system that results from this modeling, the authors prove that there are always traveling waves above a minimal speed, and analyse their shapes. They appear to be complex with composite shapes and discontinuities. Several small parameters allow for analytical solutions, and in particular, the incompressible cells limit is very singular and related to the Hele-Shaw equation. These singular traveling waves are recovered numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, J. and Bellomo, N., A Survey of Models for Tumor-Immune System Dynamics, Birkhäuser, Boston, 1997.

    Book  MATH  Google Scholar 

  2. Ambrosi, D. and Preziosi, L., On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12(5), 2002, 737–754.

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, A., Chaplain, M. A. J. and Rejniak, K., Single-Cell-Based Models in Biology and Medicine, Birkhauser, Basel, 2007.

    Book  MATH  Google Scholar 

  4. Araujo, R. and McElwain, D., A history of the study of solid tumour growth: the contribution of mathematical models, Bull Math. Biol., 66, 2004, 1039–1091.

    Article  MathSciNet  Google Scholar 

  5. Bellomo, N., Li, N. K. and Maini, P. K., On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 4, 2008, 593–646.

    Article  MathSciNet  Google Scholar 

  6. Bellomo, N. and Preziosi, L., Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model., 32, 2000, 413–452.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H. and Hamel, F., Reaction-Diffusion Equations and Popagation Phenomena, Springer-Verlag, New York, 2012.

    Google Scholar 

  8. Breward, C. J. W., Byrne, H. M. and Lewis, C. E., The role of cell-cell interactions in a two-phase model for avascular tumour growth, J. Math. Biol., 45(2), 2002, 125–152.

    Article  MathSciNet  MATH  Google Scholar 

  9. Byrne, H. and Drasdo, D., Individual-based and continuum models of growing cell populations: a comparison, J. Math. Biol., 58, 2009, 657–687.

    Article  MathSciNet  Google Scholar 

  10. Byrne, H. M., King, J. R., McElwain, D. L. S. and Preziosi, L., A two-phase model of solid tumor growth, Appl. Math. Lett., 16, 2003, 567–573.

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrne, H. and Preziosi, L., Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol., 20, 2003, 341–366.

    Article  MATH  Google Scholar 

  12. Chaplain, M. A. J., Graziano, L. and Preziosi, L., Mathematical modeling of the loss of tissue compression responsiveness and its role in solid tumor development, Math. Med. Biol., 23, 2006, 197–229.

    Article  MATH  Google Scholar 

  13. Chatelain, C., Balois, T., Ciarletta, P. and Amar, M., Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture, New Journal of Physics, 13, 2011, 115013+21.

    Article  Google Scholar 

  14. Chedaddi, I., Vignon-Clementel, I. E., Hoehme, S., et al., On constructing discrete and continuous models for cell population growth with quantitatively equal dynamics, in preparation.

  15. Ciarletta, P., Foret, L. and Amar, M. B., The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis, J. R. Soc. Interface, 8(56), 2011, 345–368.

    Article  Google Scholar 

  16. Colin, T., Bresch, D., Grenier, E., et al., Computational modeling of solid tumor growth: the avascular stage, SIAM J. Sci. Comput., 32(4), 2010, 2321–2344.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cristini, V., Lowengrub, J. and Nie, Q., Nonlinear simulations of tumor growth, J. Math. Biol., 46, 2003, 191–224.

    Article  MathSciNet  MATH  Google Scholar 

  18. De Angelis, E. and Preziosi, L., Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem, Math. Models Methods Appl. Sci., 10(3), 2000, 379–407.

    Article  MathSciNet  MATH  Google Scholar 

  19. Drasdo, D., On selected individual-based approaches to the dynamics of multicellular systems, Multiscale Modeling, W. Alt, M. Chaplain and M. Griebel (eds.), Birkhauser, Basel, 2003.

  20. Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, A. M. S., Providence, RI, 1998.

    MATH  Google Scholar 

  21. Friedman, A., A hierarchy of cancer models and their mathematical challenges, DCDS(B), 4(1), 2004, 147–159.

    MATH  Google Scholar 

  22. Funaki, M., Mimura, M. and Tsujikawa, A., Traveling front solutions in a chemotaxis-growth model, Interfaces and Free Boundaries, 8, 2006, 223–245.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gardner, R. A., Existence of travelling wave solution of predator-prey systems via the connection index, SIAM J. Appl. Math., 44, 1984, 56–76.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoehme, S. and Drasdo, D., A cell-based simulation software for multi-cellular systems, Bioinformatics, 26(20), 2010, 2641–2642.

    Article  Google Scholar 

  25. Lowengrub, J. S., Frieboes, H. B., Jin, F., et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, 2010, R1–R91.

    Article  MathSciNet  MATH  Google Scholar 

  26. Murray, J. D., Mathematical biology, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  27. Nadin, G., Perthame, B. and Ryzhik, L., Traveling waves for the Keller-Segel system with Fisher birth terms, Interfaces and Free Boundaries, 10, 2008, 517–538.

    Article  MathSciNet  MATH  Google Scholar 

  28. Perthame, B., Quirós, F. and Vázquez, J. L., The Hele-Shaw asymptotics for mechanical models of tumor growth, in preparation.

  29. Preziosi, L. and Tosin, A., Multiphase modeling of tumor growth and extracellular matrix interaction: mathematical tools and applications, J. Math. Biol., 58, 2009, 625–656.

    Article  MathSciNet  Google Scholar 

  30. Radszuweit, M., Block, M., Hengstler, J. G., et al., Comparing the growth kinetics of cell populations in two and three dimensions, Phys. Rev. E, 79, 2009, 051907-1–12.

    Article  MathSciNet  Google Scholar 

  31. Ranft, J., Basan, M., Elgeti, J., et al., Fluidization of tissues by cell division and apaptosis, PNAS, 107(49), 2010, 20863–20868.

    Article  Google Scholar 

  32. Roose, T., Chapman, S. and Maini, P., Mathematical models of avascular tumour growth: a review, SIAM Rev., 49(2), 2007, 179–208.

    Article  MathSciNet  MATH  Google Scholar 

  33. Sánchez-Garduño, F. and Maini, P. K., Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Diff. Eq., 117(2), 1995, 281–319.

    Article  MATH  Google Scholar 

  34. Weinberger, H. F., Lewis, M. A. and Li, B., Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45, 2002, 183–218.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang.

Additional information

In honor of the scientific heritage of Jacques-Louis Lions

Project supported by the ANR grant PhysiCancer and the BMBF grant LungSys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M., Vauchelet, N., Cheddadi, I. et al. Composite waves for a cell population system modeling tumor growth and invasion. Chin. Ann. Math. Ser. B 34, 295–318 (2013). https://doi.org/10.1007/s11401-013-0761-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-013-0761-4

Keywords

2000 MR Subject Classification

Navigation