Skip to main content
Log in

Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Iron (Fe) oxyhydroxides and their degree of ordering or crystallinity strongly impact the role that Fe plays in ecosystem function. Lower crystallinity phases are generally found to be more reactive than higher crystallinity phases as sorbents for organic matter and chemical compounds, as electron acceptors for organic matter mineralization or as electron donors for dysoxic respiration. We investigated Fe solid phase speciation as a function of soil depth in a redoximorphic upland soil profile.

Materials and methods

We examined a redoximorphic upland soil profile, which displayed alternating Fe-enriched and Fe-depleted zones of the Bt horizons with platy structure from 56 to 183 cm depth at the Calhoun Critical Zone Observatory in South Carolina, USA. Redoximorphic Fe depletion and enrichment zones were sampled to enable a detailed investigation of Fe mineralogy during redox transformations. All samples were characterized by total elemental analysis, X-ray diffraction, and 57Fe Mössbauer spectroscopy.

Results and discussion

Total Fe in the Fe-enriched and Fe-depleted zones was 26.3 – 61.2 and 15.0 – 22.7 mg kg−1 soil, respectively, suggesting periodic redox cycling drives Fe redistribution within the upland soil profile. The Mössbauer data clearly indicated goethite (56 – 74% of total Fe) and hematite (7 – 31% of total Fe) in the Fe-enriched zones, with the proportion of hematite increasing with depth at the expense of goethite. In addition, the overall crystallinity of Fe phases increased with depth in the Fe-enriched zones. In contrast to Fe-enriched zones, Fe-depleted zones contained no hematite and substantially less goethite (and of a lower crystallinity) but more aluminosilicates-Fe(III) (e.g., hydroxy-interlayered vermiculite, biotite, kaolinite) with XRD and Mössbauer data suggesting a shift from oxidized biotite-Fe(III) at depth to hydroxy-interlayered vermiculite plus low-crystallinity goethite in the Fe-depleted zones in the upper Bt.

Conclusions

Our data suggest the varied crystalline states of hematite and goethite may be important for Fe reduction over long-term time scales. The persistence of low-crystallinity Fe phases in Fe depletion zones suggests that both dissolution and re-precipitation events occur in the Fe-depleted layers. These variations in Fe phase abundance and crystallinity within similar redoximorphic features suggest that Fe likely shifts ecosystem roles as a function of soil depth and likely has more rapid Fe cycling in the upper Bt horizons in upland soils, while serving as a weathering engine at depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bacon AR (2014) Pedogenesis and anthropedogenesis on the Southern Piedmont. Ph.D. thesis, Duke University

  • Bacon AR, Richter DD, Bierman PR, Rood DH (2012) Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve. Geology 40:847–850

    Article  CAS  Google Scholar 

  • Bao H, Koch PL (1999) Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis. Geochim Cosmochim Acta 63:599–613

    Article  CAS  Google Scholar 

  • Barcellos D, Cyle KT, Thompson A (2018) Faster redox fluctuations can lead to higher iron reduction rates in humid forest soils. Biogeochemistry 137(3):367–378

    Article  CAS  Google Scholar 

  • Bonneville S, Van Cappellen P, Behrends T (2004) Microbial reduction of iron (III) oxyhydroxides: effects of mineral solubility and availability. Chem Geol 212:255–268

    Article  CAS  Google Scholar 

  • Bonneville S, Behrends T, Van Cappellen P (2009) Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship. Geochim Cosmochim Acta 73:5273–5282

    Article  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15−23

    Google Scholar 

  • Buettner SW, Kramer MG, Chadwick OA, Thompson A (2014) Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma 221–222:139–145

    Article  CAS  Google Scholar 

  • Chadwick OA, Brimhall GH, Hendricks DM (1990) From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3:369–390

    Article  Google Scholar 

  • Chen C, Thompson A (2018) Ferrous iron oxidation under varying pO2 levels: the effect of Fe(III)/Al(III) oxide minerals and organic matter. Environ Sci Technol 52(2):597–606

    Article  CAS  Google Scholar 

  • Chen C, Dynes J, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol 48(23):13751–13759

    Article  CAS  Google Scholar 

  • Chen C, Kukkadapu R, Sparks DL (2015) Influence of coprecipitated organic matter on Fe2+ (aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environ Sci Technol 49:10927–10936

    Article  CAS  Google Scholar 

  • Chen C, Kukkadapu RK, Lazareva O, Sparks DL (2017) Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies. Environ Sci Technol 51(14):7903–7912

    Article  CAS  Google Scholar 

  • Chen C, Meile C, Wilmoth J, Barcellos D, Thompson A (2018) Influence of pO2 on iron redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil. Environ Sci Technol. https://doi.org/10.1021/acs.est.8b01368

  • Cheng YQ, Yang LZ, Cao ZH, Ci E, Yin S (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151:31–41

    Article  CAS  Google Scholar 

  • Cheng L, Zhu J, Chen G, Zheng X, Oh NH, Rufty TW, Richter DB, Hu S (2010) Atmospheric CO2 enrichment facilitates cation release from soil. Ecol Lett 13:284–291

    Article  CAS  Google Scholar 

  • Cismasu AC, MarcMichel F, Patricia Tcaciuc A, Brown GE (2014) Properties of impurity-bearing ferrihydrite III. Effects of Si on the structure of 2-line ferrihydrite. Geochim Cosmochim Acta 133:168–185

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The Iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  • Dubinsky EA, Silver WL, Firestone MK (2010) Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 91:2604–2612

    Article  Google Scholar 

  • Dyar MD, Grover TW, Rice JM, Guidotti CV (1987) Presence of ferric iron and octahedral ferrous ordering in biotites from schists: implications for garnet-biotite geothermometry. Geol Soc Am Abstr Programs 19:650

    Google Scholar 

  • Dyer LG, Chapman KW, English P, Saunders M, Richmond WR (2012) Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates. Am Mineral 97(1):63–69

    Article  CAS  Google Scholar 

  • Eusterhues K, Wagner FE, Häusler W, Hanzlik M, Knicker H, Totsche KU, Kögel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Environ Sci Technol 42:7891–7897

    Article  CAS  Google Scholar 

  • Fimmen RL, DB Richter D, Vasudevan D et al (2008) Rhizogenic Fe–C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils. Biogeochemistry 87:127–141

    Article  CAS  Google Scholar 

  • Fysh SA, Cashion JD, Clark PE (1983) Mössbauer-effect studies of iron in kaoline: 1. Structural iron. Clay Clay Miner 31:285–292

    Article  CAS  Google Scholar 

  • Ginn BR, Meile C, Wilmoth J, Tang Y, Thompson A (2017) Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ Sci Technol 51(6):3250–3259

    Article  CAS  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London

    Book  Google Scholar 

  • Hall SJ, Lipzin DL, DeAngelis K, Buss H, Silver WL (2016a) Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130:177–190

    Article  CAS  Google Scholar 

  • Hall SJ, Silver WL, Timokhin VI, Hammel KE (2016b) Iron addition to soil specifically stabilized lignin. Soil Biol Biochem 98:95–98

    Article  CAS  Google Scholar 

  • Hassellöv M, von der Kammer F (2008) Iron oxides as geochemical nanovectors for metal transport in soil–river systems. Elements 4:401–406

    Article  CAS  Google Scholar 

  • Hossner L et al (1996) Dissolution for total elemental analysis. In: Sparks DL et al (eds) Methods of soil analysis, Part 3―chemical methods. American Society of Agronomy, Madison, pp 49–64

    Google Scholar 

  • Jacobs PM, West LT, Shaw JN (2002) Redoximorphic features as indicators of seasonal saturation, Lowndes County, Georgia. Soil Sci Soc Am J 66:315–323

    Article  CAS  Google Scholar 

  • Janot C, Gibert H, Tobias C (1973) Caractérisation des kaolinites ferrifères par spectrométrie Mössbauer. Bull Soc Fr Mineral Cristallogr 96:281–291

    CAS  Google Scholar 

  • Jones AM, Collins RN, Rose J, Waite TD (2009) The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochim Cosmochim Acta 73(15):4409–4422

    Article  CAS  Google Scholar 

  • Kämpf N, Schwertmann U (1983) Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 29:27–39

    Article  Google Scholar 

  • Kölbl A, Schad P, Jahn R, Amelung W, Bannert A, Cao ZH, Fiedler S, Kalbitz K, Lehndorff E, Müller-Niggemann C, Schloter M, Schwark L, Vogelsang V, Wissing L, Kögel-Knabner I (2014) Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 228–229:67–89

    Article  CAS  Google Scholar 

  • Kukkadapu RK, Zachara JM, Fredrickson JK, McKinley JP, Kennedy DW, Smith SC, Dong HL (2006) Reductive biotransformation of Fe in shale–limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochim Cosmochim Acta 70:3662–3676

    Article  CAS  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA, Alfano MJ (2000) Refractory element mobility in volcanic soils. Geology 28:683–686

    Article  CAS  Google Scholar 

  • Lalonde AE, Rancourt DG, Ping JY (1998) Accuracy of ferric/ferrous determinations in micas: a comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods. Hyperfine Interact 117:175–204

    Article  CAS  Google Scholar 

  • Lalonde K, Mucci A, Quellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Article  CAS  Google Scholar 

  • Langmuir D (1971) Particle size effect on the reaction goethite = hematite + water. Am J Sci 271:147–156

    Article  CAS  Google Scholar 

  • Li J, Richter DD, Mendoza A, Heine P (2008) Four-decade responses of soil trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe. Ecology 89(10):2911–2923

    Article  Google Scholar 

  • Li Y, Yu S, Strong J, Wang H (2012) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “Fe-III-Fe-II redox wheel” in dynamic redox environments? J Soils Sediments 12:683

    Article  CAS  Google Scholar 

  • Lindbo DL, Stolt MH, Vepraskas MJ (2010) Redoximorphic features. In: Interpretation of micromorphological features of soils and regoliths, pp 129–147

    Chapter  Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese and other metals. Adv Agron 54:175–231

    Article  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  Google Scholar 

  • Mansfeldt T, Schuth S, Häusler W, Wagner F, Kaufhold S, Overesch M (2012) Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. J Soils Sediments 12:97–114

    Article  CAS  Google Scholar 

  • Markewitz D, Richter DD (2000) Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. For Ecol Manag 130:109–129

    Article  Google Scholar 

  • Markewitz D, Richter DD, Allen HL, Urrego JB (1998) Three decades of observed soil acidification at the Calhoun Experimental Forest: has acid rain made a difference? Soil Sci Soc Am J 62:1428–1439

    Article  CAS  Google Scholar 

  • Mayer TD, Jarrell WM (1996) Formation and stability of iron(II) oxidation products under natural concentrations of dissolved silica. Water Res 30:1208–1214

    Article  CAS  Google Scholar 

  • Merino E (1984) Survey of geochemical self-patterning phenomena. In: Nicolis G, Baras F (eds) Chemical instabilities. D. Reidel Publishing Company, Dordrecht, pp 305–328

    Chapter  Google Scholar 

  • Mikutta C, Mikutta R, Bonneville S, Wagner F, Voegelin A, Christl I, Kretzschmar R (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: characterization. Geochim Cosmochim Acta 72:1111–1127

    Article  CAS  Google Scholar 

  • Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Change Biol 21:986–996

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 378

    Google Scholar 

  • Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers Group, Norwell

    Book  Google Scholar 

  • Murad E, Schwertmann U (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner 18:301–312

    Article  CAS  Google Scholar 

  • Noël V, Marchand C, Juillot F, Ona-Nguema G, Viollier E, Marakovic G, Olivi L, Delbes L, Gelebart F, Morin G (2014) EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia). Geochim Cosmochim Acta 136:211–228

    Article  CAS  Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron (III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652

    Article  CAS  Google Scholar 

  • Postma D (1993) The reactivity of iron oxides in sediments: a kinetic approach. Geochim Cosmochim Acta 57:5027–5034

    Article  CAS  Google Scholar 

  • Quénard L, Samouëlian A, Laroche B, Cornu S (2011) Lessivage as a major process of soil formation: a revisitation of existing data. Geoderma 167–168:135–147

    Article  Google Scholar 

  • Rancourt DG (1998) Mössbauer spectroscopy in clay science. Hyperfine Interact 117:3–38

    Article  CAS  Google Scholar 

  • Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instr um Methods Phys Res Sect B Beam Interact Mater At 58:85–97

    Article  Google Scholar 

  • Richter DD, Markewitz D (2001) Understanding soil change. Cambridge University Press, Cambridge

    Google Scholar 

  • Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR, Urrego B (1994) Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L) ecosystem. Ecology 75(5):1463–1473

    Article  Google Scholar 

  • Richter DD, Markewitz D, Heine PR, Jin V, Raikes J, Tian K, Wells CG (2000) Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecol Manag 138(1–3):233–248

    Article  Google Scholar 

  • Richter DD, Oh NH, Fimmen R, Jackson J (2007) The rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere. Academic Press, Cambridge, pp 1799–1200

    Google Scholar 

  • Roden E, Wetzel R (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (2002) Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol Oceanogr 47:198–211

    Article  CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron (III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Schroeder PA (2018) Clays in the critical zone. Cambridge University Press, Online ISBN: 9781316480083, 252 pp

  • Schroeder PA, Kim JG, Melear ND (1997) Mineralogical and textural criteria for recognizing remnant Cenozoic deposits on the Piedmont: evidence from Sparta and Greene County, Georgia, U.S.A. Sediment Geol 108:195–206

    Article  CAS  Google Scholar 

  • Schroeder PA, Pruett RJ, Melear ND (2004) Crystal-chemical changes in an oxidative weathering front in a middle Georgia kaolin deposit. Clay Clay Miner 52:212–220

    Article  CAS  Google Scholar 

  • Schulz M, Stonestrom D, Lawrence C, Bullen T, Fitzpatrick J, Kyker-Snowman E, Manning J, Mnich M (2016) Structured heterogeneity in a marine terrace chronosequence: upland mottling. Vadose Zone J 15(2). https://doi.org/10.2136/vzj2015.07.0102

  • Schwertmann U (1985) The effect of pedogenic environments on iron oxide minerals. Advances in soil science, vol 1. Springer-Verlag, New York Inc., New York, pp 171–180

    Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory―preparation and characterization. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB, Kittrick JA, Milford MH, White JL (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 145–180

    Google Scholar 

  • Schwertmann U, Thalmann H (1976) The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Mineral 11:189–200

    Article  CAS  Google Scholar 

  • Schwertmann U, Friedl J, Kyek A (2004) Formation and properties of a continuous crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms. Clay Clay Miner 52:221–226

    Article  CAS  Google Scholar 

  • Schwertmann U, Wagner F, Knicker H (2005) Ferrihydrite–humic associations. Soil Sci Soc Am J 69:1009–1015

    Article  CAS  Google Scholar 

  • Taylor KG, Konhauser KO (2011) Iron in earth surface systems: a major player in chemical and biological processes. Elements 7:83–88

    Article  CAS  Google Scholar 

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Schink B (ed) Advances in microbial ecology. Springer, Boston, pp 41–84

    Chapter  Google Scholar 

  • Thompson A, Chadwick OA, Boman S, Chorover J (2006a) Colloid mobilization during soil iron redox oscillations. Environ Sci Technol 40(18):5743–5749

    Article  CAS  Google Scholar 

  • Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006b) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Acta 70:1710–1727

    Article  CAS  Google Scholar 

  • Thompson A, Chadwick OA, Rancourt DG, Chorover J (2011) Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim Cosmochim Acta 75(1):119–133

    Article  CAS  Google Scholar 

  • Torrent J, Guzman R, Parra MA (1982) Influence of relative humidity on the crystallization of Fe(III) oxides from ferrihydrite. Clay Clay Miner 30:337–340

    Article  CAS  Google Scholar 

  • Trolard F, Tardy Y (1987) The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochim Cosmochim Acta 51:945–957

    Article  CAS  Google Scholar 

  • Veneman PLM, Spokas LA, Lindbo DL (1998) Soil moisture and redoximorphic features: a historical perspective. In: Rabenhorst MC, Bell JC, McDaniel PA (eds) Quantifying soil hydromorphology, SSSA Spec. Publ. 54. SSSA, Madison, pp 1–23

    Google Scholar 

  • Vogelsang V, Kaiser K, Wagner FE, Jahn R, Fiedler S (2016) Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions. Geoderma 278:40–48

    Article  CAS  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  Google Scholar 

  • Wiederhold JG, Teutsch N, Kraemer SM, Halliday AN, Kretzschmar R (2007) Iron isotope fractionation during pedogenesis in redoximorphic soils. Soil Sci Soc Am J 71:1840–1850

    Article  CAS  Google Scholar 

  • Winkler P, Kaiser K, Thompson A, Kalbitz K, Fiedler S, Jahn R (2018) Contrasting evolution of iron phase composition in soils exposed to redox fluctuations. Geochimica et Cosmochimica Acta 235:89–102

  • Yang WH, Liptzin D (2015) High potential for iron reduction in upland soils. Ecology 96:2015–2020

    Article  Google Scholar 

  • Yapp CL (1983) Effects of A1OOH-FeOOH solid solution on goethite-hematite equilibrium. Clay Clay Miner 31:239–240

    Article  CAS  Google Scholar 

  • Zhang MK, Wilson MJ, He ZL (1998) Iron oxides and their relations to colors in some soils of southern China. Pedosphere 8:53–58

    Google Scholar 

  • Zhang Y, Lin X, Werner W (2003) The effect of soil flooding on the transformation of Fe oxides and the adsorption/desorption behavior of phosphate. J Plant Nutr Soil Sci 166:68–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Gratitude is expressed to the National Science Foundation for financial support of the research: NSF grants EAR-1331846 and EAR-1451508. We thank Jared Wilmoth for his assistance with Mössbauer analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Thompson.

Additional information

Responsible editor: Zhaohui Wang

Electronic supplementary material

ESM 1

(DOCX 6056 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Barcellos, D., Richter, D.D. et al. Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. J Soils Sediments 19, 785–797 (2019). https://doi.org/10.1007/s11368-018-2068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2068-2

Keywords

Navigation