Skip to main content

Advertisement

Log in

Sediments in urban river basins: a review of sediment–contaminant dynamics in an environmental system conditioned by human activities

  • URBAN SEDIMENTS A GLOBAL PERSPECTIVE • REVIEW ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, aim and scope

Over 50% of the global population live in urban centres and, therefore, an understanding of the processes acting upon urban systems is a global issue. The nature of human-made, often impervious, land surfaces and heavily engineered waterways results in hydrological and sedimentological systems in urbanised basins which contrast significantly to those within more natural (i.e. pristine, forested, agricultural) aquatic systems. In addition, the abundance of contamination sources in urban systems results in chemical pressures often manifested as high pollution concentrations or loadings, which in turn have detrimental impacts on human and ecosystem health. These lead to management and sustainability issues not generally encountered in more natural environments. The purpose of this review is to provide a state-of-the-art assessment of sediment sources, pathways and storage within urban river systems, to consider sediment management within urban systems and river basins, and examine the role of local and global environmental changes on sediment processes and management. Inevitably, much of the sediment that is transported within urbanised basins is contaminated, so this review also considers sediment–contaminant sources and interactions.

Conclusions and recommendations

We reach a number of conclusions and recommendations for future research. There is a need for better sampling and monitoring of sediment and sediment-associated contaminant fluxes and cycling in urban river channels and basins. This should include better techniques and studies to identify sources and transfers of road-deposited sediment (RDS), airborne particulate matter and sediments in the river system. Greater interdisciplinary research, combining sedimentologists, hydrologists, urban planners, urban archaeologists, chemists and biologists, is needed. More attention needs to focus on upscaling and connecting urban areas to the rest of the river basin, both upstream and downstream. Finally, there is a need to balance multiple needs (urban population, water resources) with likely trends in both urban development and global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Chalabi AS, Hawker D (1996) Retention and exchange behaviour of vehicular lead in street dusts from major roads. Sci Total Environ 187:105–119

    Article  CAS  Google Scholar 

  • Allott RW, Hewitt CN, Kelly MR (1990) The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-Furness. Sci Total Environ 93:403–410

    Article  CAS  Google Scholar 

  • Apitz SE (2008) Is risk-based, sustainable sediment management consistent with European Policy? J Soils Sediments 8:461–466

    Article  Google Scholar 

  • Apitz S, White S (2003) A conceptual framework for river-basin-scale sediment management. J Soils Sediments 3:132–138

    Article  Google Scholar 

  • Beckwith PR, Ellis JB, Revitt DM (1986) Heavy metal and magnetic relationships for urban source sediments. Phys Earth Planet Inter 42:67–75

    Article  CAS  Google Scholar 

  • Behrendt H (1993) Point and diffuse loads of selected pollutants in the Rhine river and its main tributaries. RR-93-1. IIASA, Laxenburg

    Google Scholar 

  • Biggins PDE, Harrison RM (1986) Chemical speciation of lead compounds in street dusts. Environ Sci Technol 14:336–339

    Article  Google Scholar 

  • Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42:2849–2861

    Article  CAS  Google Scholar 

  • Bohlen WF, Erickson MJ (2006) Incorporating sediment stability within the management of contaminated sediment sites: a synthesis approach. Integrated Environ Assess Manag 2:24–28

    Article  Google Scholar 

  • Bølviken B, Bogen J, Martun M, Langedal M, Ottesen RT, Volden T (2007) Overbank sediments: a natural bed blending sampling medium for large-scale geochemical mapping. Chemometr Intell Lab Syst 74:183–199

    Article  CAS  Google Scholar 

  • Breed CA, Arocena JM, Sutherland D (2002) Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate. Atmos Environ 36:1721–1731

    Article  CAS  Google Scholar 

  • Brils J (2004) Sediment monitoring under the EU Water Framework Directive. J Soils Sediments 4:72–73

    Article  Google Scholar 

  • Brinkmann R, Tobin GA (2003) Urban sediment removal: the science, policy, and management of street sweeping. Kluwer, Dordrecht 168 pp

    Google Scholar 

  • Bromhead JC, Beckwith P (1994) Environmental dredging on the Birmingham Canals: water quality and sediment treatment. J Inst Water Environ Manag 8:350–359

    Article  CAS  Google Scholar 

  • Bullock P, Gregory PJ (eds) (1991) Soils in the urban environment. Blackwell, Oxford

    Google Scholar 

  • Caine N (2004) Mechanical and chemical denudation in mountain systems. In: Owens PN, Slaymaker O (eds) Mountain geomorphology. Arnold, London, pp 132–152

    Google Scholar 

  • Carraz F, Taylor KG, Stainsby S, Robertson DJ (2006) Contaminated urban road deposited sediment (RDS), Greater Manchester, UK: a spatial assessment of potential surface water impacts. North West Geogr 6:10–19

    Google Scholar 

  • Carter J, Owens PN, Walling DE, Leeks GJL (2003) Fingerprinting suspended sediment sources in a large urban river system. Sci Total Environ 314–316:513–534

    Article  CAS  Google Scholar 

  • Carter J, Walling DE, Owens PN, Leeks GJL (2006) Spatial and temporal variability in the concentration and speciation of metals in suspended sediment transported by the River Aire, Yorkshire, UK. Hydrol Processes 20:3007–3027

    Article  CAS  Google Scholar 

  • Casper ST (2008) Regulatory frameworks for sediment management. In: Owens PN (ed) Sustainable management of sediment resources: sediment management at the river basin scale. Elsevier, Amsterdam, pp 55–81

    Chapter  Google Scholar 

  • Charlesworth SM, Foster IDL (1999) Sediment budgets and metal fluxes in two contrasting urban lakes in Coventry, UK. Appl Geogr 19:199–210

    Article  Google Scholar 

  • Charlesworth SM, Lees JA (1999) The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environ Geochem Health 21:97–115

    Article  CAS  Google Scholar 

  • Charlesworth SM, Everett M, McCarthy R, Ordonez A, de Miguel E (2003) A comparative study of heavy metal distribution in deposited street dusts in a large and small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int 29:563–573

    Article  CAS  Google Scholar 

  • Chin A (2006) Urban transformation of river landscapes in a global context. Geomorph 79:460–487

    Article  Google Scholar 

  • Chorley RJ (1962) Geomorphology and general systems theory. US Geological Survey Professional Paper 500-B

  • Clark CF, Smith PG, Nielson G, Dinnie RM (2000) Chemical characterisation and legal classification of sludges from roads sweepings. J Chart Instit Water Environ Manag 14:99–102

    Article  CAS  Google Scholar 

  • Collins AL, Anthony SG (2008) Assessing the likelihood of catchments across England and Wales meeting “good ecological status” due to sediment contributions from agricultural sources. Environ Sci Policy 11:163–170

    Article  Google Scholar 

  • Collins AL, Anthony SG, Turner T, Hawley J (2007) Predicting the impact of projected change in agriculture by 2015 on annual mean fluvial suspended sediment concentrations across England and Wales. In: Water Quality and Sediment Behaviour for the Future: Predictions for the 21st Century. IAHS Publication 314, 28–37

  • De Miguel E, Llamas JF, Chacon E, Berg T, Larssen S, Royset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740

    Article  Google Scholar 

  • Dodd J, Large DJ, Fortey NJ, Kemp S, Styles M, Wetton P, Milodowski A (2003) Geochemistry and petrography of phosphorus in urban canal bed sediment. Appl Geochem 18:259–267

    Article  CAS  Google Scholar 

  • Droppo IG (2001) Rethinking what constitutes suspended sediment. Hydrol Process 15:1551–1564

    Article  Google Scholar 

  • Droppo IG, Walling DE, Ongley ED (1998) Suspended sediment structure: implications for sediment and contaminant transport modelling. In: Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes. IAHS Publication 249:437–444

  • Droppo IG, Leppard GG, Liss SN, Milligan TG (eds) (2005) Flocculation in natural and engineered environmental systems. CRC, Boca Raton

    Google Scholar 

  • Droppo IG, Irvine KN, Curran KJ, Carrigan E, Mayo S, Jaskot C, Trapp B (2006) Understanding the distribution, structure and behaviour of urban sediments and associated metals towards improving water management strategies. In: Owens PN, Collins AJ (eds) Soil erosion and sediment redistribution in river catchments: measurement, modelling and management. CABI, Wallingford, pp 272–286

    Google Scholar 

  • Duggan MJ, Williams S (1977) Lead-in-dust in city streets. Sci Total Environ 7:91–97

    Article  CAS  Google Scholar 

  • Duh J-D, Shandas V, Chang H, George LA (2008) Rates of urbanization and the resilience of air and water quality. Sci Total Environ 400:238–256

    Article  CAS  Google Scholar 

  • Farago ME, Kavanagh P, Blanks R, Kelly J, Kazantzis G, Thornton I, Simpson PR, Cook JM, Delves HT, Hall GEM (1998) Platinum concentrations in urban road dust and soil, and in blood and urine in the United Kingdom. Analyst 123:451–454

    Article  CAS  Google Scholar 

  • Finkenbine JK, Atwater JW, Mavinic DS (2000) Stream health after urbanization. J Amer Water Resour Assoc 35:1149–1160

    Article  Google Scholar 

  • Förstner U (2002) Sediments and the European Water Framework Directive. J Soils Sediments 2:54–55

    Article  Google Scholar 

  • Förstner U, Apitz SE (2007) Sediment remediation: US focus on capping and monitored natural recovery. Fourth International Battelle Conference on Remediation of Contaminated Sediment. J Soils Sediments 7:4351–4358

    Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale—examples from the River Elbe catchment area. J Soils Sediments 4:247–260

    Article  Google Scholar 

  • Foster IDL, Charlesworth SM (1996) Heavy metals in the hydrological cycle: trends and explanation. Hydrol Processes 10:227–261

    Article  Google Scholar 

  • Gainswin BE, House WA, Leadbeater BSC, Armitage PD (2006a) Kinematics of phosphorus release from a natural mixed grain-size sediment with associated biofilms. Sci Total Environ 360:127–141

    Article  CAS  Google Scholar 

  • Gainswin BE, House WA, Leadbeater BSC, Armitage PD, Patten J (2006b) The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci Total Environ 360:142–157

    Article  CAS  Google Scholar 

  • Gasperi P, Garnaud S, Rocher V, Moilleron R (2009) Priority pollutants in wastewater and settleable particles within a densely urbanised area: a case study of Paris, France. Sci Total Environ 407:2900–2908

    Article  CAS  Google Scholar 

  • German J, Svensson G (2002) Metal content and particle size distribution of street sediments and street sweeping waste. Water Sci Technol 46:191–198

    CAS  Google Scholar 

  • Goodwin TH, Young AR, Holmes MGR, Old GH, Hewitt N, Leeks GJL, Packman JC, Smith BPG (2003) The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire. Sci Total Environ 314–316:475–494

    Article  CAS  Google Scholar 

  • Göransson GI, Bendz D, Larson PM (2009) Combining landslide and contaminant risk: a preliminary assessment. J Soils Sediments 9:33–45

    Article  Google Scholar 

  • Gromaire MC, Garnaud SS, Saard M, Chebbo G (2001) Contribution of different sources to the pollution of wet weather flow in combined sewers. Water Res 35:521–533

    Article  CAS  Google Scholar 

  • Gromaire-Mertz MC, Garnaud SS, Gonzalez A, Chebbo G (1999) Characteristics of urban runoff pollution in Paris. Water Sci Technol 39:1–8

    CAS  Google Scholar 

  • Gurnell A, Lee M, Souch C (2007) Urban rivers: hydrology, geomorphology, ecology and opportunities for change. Geography Compass 1:1118–1137

    Article  Google Scholar 

  • Hamilton RS, Revitt DM, Warren RS (1984) Levels and physico-chemical association of Cd, Cu, Pb and Zn in road sediments. Sci Total Environ 33:59–74

    Article  CAS  Google Scholar 

  • Heise S, Förstner U (2006) Risks from historical contaminated sediments in the Rhine basin. Water Air Soil Pollut Focus 6:261–272

    Article  CAS  Google Scholar 

  • Hopke PK, Lamb RE, Natusch FS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172

    Article  CAS  Google Scholar 

  • Horowitz AJ (1991) A Primer in Sediment–Trace Element Chemistry, Lewis Publishers

  • Horowitz AJ (2008) Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Sci Total Environ 400:315–343

    Article  CAS  Google Scholar 

  • Horowitz AJ, Stephens VC (2008) The effects of land use on fluvial sediment chemistry for the conterminous U.S.—results from the first cycle of the NAWQA Program: trace and minor elements, phosphorus, carbon, and sulphur. Sci Total Environ 400:290–314

    Article  CAS  Google Scholar 

  • Horowitz AJ, Kent AE, Smith JJ (2008) Monitoring urban impacts on suspended sediment, trace element and nutrient fluxes within the city of Atlanta, Georgia, USA: program design, methodological considerations and initial results. Hydrol Process 22:1473–1496

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Curtis CD, Vaughan DJ (1998) Chemical remobilization of contaminated metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surf Processes Landf 23:671–684

    Article  CAS  Google Scholar 

  • Hvitved-Jacobsen T, Yousef YA, Wanielista MP, Pearce DB (1984) Fate of phosphorus and nitrogen in ponds receiving highway runoff. Sci Total Environ 33:259–270

    Article  CAS  Google Scholar 

  • Jarvie HP, Jurgens MD, Williams RJ, Neal C, Davies JJL, Barrett C et al (2005) Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and the Herefordshire Wye. J Hydrol 304:51–74

    Article  CAS  Google Scholar 

  • Jarvie HP, Neal C, Withers PJA (2006) Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Sci Total Environ 360:246–253

    Article  CAS  Google Scholar 

  • Kataoka K, Matsumoto F, Ichinose T, Taniguichi M (2009) Urban warming trends in several large Asian cities over the last 100 years. Sci Total Environ 407:3112–3119

    Article  CAS  Google Scholar 

  • Kelderman P, Drossaert WME, Min Z, Galione LS, Okonkwo LC, Clarisse IA (2000) Pollution assessment of the canal sediments in the city of Delft (the Netherlands). Water Res 34:936–944

    Article  CAS  Google Scholar 

  • Kim KW, Myung JH, Ahn JS, Chon HT (1998) Heavy metal contamination in dusts and stream sediments in the Taejon Area, Korea. J Geochem Explor 64:409–419

    Article  CAS  Google Scholar 

  • Kronvang B, Laubel A, Larsen SE, Friberg N (2003) Pesticides and heavy metals in Danish streambed sediment. Hydrobiologia 494:93–101

    Article  CAS  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Jimenez B, Miller K, Oki T, Sen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10

    Google Scholar 

  • Laidlaw MAS, Filipeli GM (2008) Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Appl Geochem 23:2021–2039

    Article  CAS  Google Scholar 

  • Large DJ, Fortey NJ, Milodowski AE, Christy AG, Dodd J (2002) Petrographic observations of iron, copper and zinc sulfides in freshwater canal sediment. J Sediment Res 71:61–69

    Article  Google Scholar 

  • Lawler DM, Petts GE, Foster IDL, Harper S (2006) Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Sci Total Environ 360:109–126

    Article  CAS  Google Scholar 

  • Lecoanet H, Leveque F, Ambrosi JP (2003) Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ Pollution 122:229–234

    Article  CAS  Google Scholar 

  • Lee JH, Bang KW, Ketchum LH, Choe JS, Yu MJ (2002) First flush analysis of urban storm runoff. Sci Total Environ 293:163–175

    Article  CAS  Google Scholar 

  • Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260

    Article  CAS  Google Scholar 

  • Linton RW, Natusch DFS, Solomon RL, Evans CA (1980) Physicochemical characterisation of lead in urban dusts: a microanalytical approach to lead tracing. Environ Sci Technol 4:159–164

    Article  Google Scholar 

  • Macklin MG, Dowsett RB (1989) The chemical and physical speciation of trace metals on fine overbank flood sediments in the Tyne basin, north-east England. Catena 16:135–151

    Article  CAS  Google Scholar 

  • Marsalek J, Marsalek PM (1997) Characteristics of sediments from a stormwater management pond. Water Sci Technol 36:117–122

    CAS  Google Scholar 

  • Massadeh AM, Snook RD (2002) Determination of Pb and Cd in road dusts over the period in which Pb was removed from petrol in the UK. J Environ Monit 4:567–572

    Article  CAS  Google Scholar 

  • Mazzei F, D’Alessandro A, Lucarelli F, Nava S, Prati P, Vecchi R (2008) Characterization of particulate matter sources in an urban environment. Sci Total Environ 401:81–89

    Article  CAS  Google Scholar 

  • McAlister JJ, Smith BJ, Neto JAB (2000) The presence of calcium oxalate dihydrate (weddellite) in street sediments from Niteroi, Brazil and its health implications. Environ Geochem Health 22:195–210

    Article  CAS  Google Scholar 

  • Meharg AA, Wright J, Leeks GJL, Wass PD, Owens PN, Walling DE, Osborn D (2003) PCB congener dynamics in a heavily industrialized river catchment. Sci Total Environ 314–316:439–450

    Article  CAS  Google Scholar 

  • Memon FA, Butler D (2002a) Identification and modelling of dry weather processes in gully pots. Water Res 36:1351–1359

    Article  CAS  Google Scholar 

  • Memon FA, Butler D (2002b) Assessment of gully pot management strategies for runoff quality control using a dynamic model. Sci Total Environ 295:115–129

    Article  CAS  Google Scholar 

  • Motelica-Heino M, Rauch S, Morrison GM, Donard OFX (2001) Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation–ICP-MS. Anal Chim Acta 436:233–244

    Article  CAS  Google Scholar 

  • Nageotte SM, Day JP (1998) Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analyst 123:59–62

    Article  CAS  Google Scholar 

  • Nelson EJ, Booth DB (2002) Sediment sources in an urbanizing, mixed land-use watershed. J Hydrol 264:51–68

    Article  Google Scholar 

  • Netzband A, Reincke H, Bergemann M (2002) The River Elbe: a case study of the ecological and economical chain of sediments. J Soils Sediments 2:112–116

    Article  CAS  Google Scholar 

  • Norra S, Stueben D (2003) Urban soils. J Soils Sediments 3:230–233

    Article  Google Scholar 

  • Old GH, Leeks GJL, Packman JC, Smith BPG, Lewis S, Hewitt EJ, Holmes M, Young A (2003) The impact of a convectional summer rainfall event on river flow and fine sediment transport in a highly urbanised catchment: Bradford, West Yorkshire. Sci Total Environ 314–316:495–512

    Article  CAS  Google Scholar 

  • Old GH, Leeks GJL, Packman JC, Smith BPG, Lewis S, Hewitt EJ (2006) River flow and associated transport of sediments and solutes through a highly urbanised catchment. Bradford, West Yorkshire. Sci Total Environ 360:98–108

    Article  CAS  Google Scholar 

  • Owens PN (2005) Conceptual models and budgets for sediment management at the river basin scale. J Soils Sediments 5:201–212

    Article  CAS  Google Scholar 

  • Owens PN (2008) Sediment behaviour, functions and management in river basins. In: Owens PN (ed) Sustainable management of sediment resources: sediment management at the river basin scale. Elsevier, Amsterdam, pp 1–29

    Chapter  Google Scholar 

  • Owens PN, Walling DE (2002) The phosphorus content of fluvial sediment in rural and industrialized river basins. Water Res 36:685–701

    Article  CAS  Google Scholar 

  • Owens PN, Walling DE (2003) Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K., over the last 100 years, as recorded by overbank floodplain deposits. Hydrobiologia 494:185–191

    Article  CAS  Google Scholar 

  • Owens PN, Walling DE, Leeks GJL (2000) Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. In: Foster IDL (ed) Tracers in geomorphology. Wiley, Chichester, pp 291–308

    Google Scholar 

  • Owens PN, Walling DE, Carton J, Meharg AA, Wright J, Leeks GJL (2001) Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins. Sci Total Environ 266:177–186

    Article  CAS  Google Scholar 

  • Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Applications 21:693–717

    Article  Google Scholar 

  • Pardo R, Barrado E, Perez L, Vega M (1990) Determination and speciation of heavy metals in sediment of the Pisuerga River. Water Res 24:349–373

    Article  Google Scholar 

  • Petticrew EL (2009) Thirty years of sediment–water science: history, trends and future directions. Marine Freshwater Res. doi:10.1071/MF08119

    Google Scholar 

  • Petticrew EL, Biickert SL (1998) Characterization of sediment transport and storage in the upstream portion of the Fraser River (British Columbia, Canada). In: Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes. IAHS Publication 249, 383–391

  • Pitt R, Clark S (2003) Emerging stormwater controls for critical source areas. In: Sulivan D, Field R (eds) Management of wet-weather flows in the watershed: technology and management. CRC, Boca Raton, pp 103–139

    Google Scholar 

  • Qu W, Kelderman P (2001) Heavy metal contents in the Delft canal sediments and suspended solids of the River Rhine: multivariate analysis for source tracing. Chemosphere 45:919–925

    Article  CAS  Google Scholar 

  • Robertson DJ, Taylor KG (2007) Temporal variability of metal contamination in urban road-deposited sediment in Manchester, UK: implications for urban pollution monitoring. Water Air Soil Pollut 186:209–220

    Article  CAS  Google Scholar 

  • Robertson DJ, Taylor KG, Hoon SR (2003) Geochemical and mineral characterisation of urban sediment particulates, Manchester, UK. Appl Geochem 18:69–282

    Article  Google Scholar 

  • Rubin JI, Brown SG, Hafner HR, Roberts PT (2008) Source apportionment of PM2.5 in Prince George, British Columbia. Final Report STI-906052.06-3268-FR. Sonoma Technology Inc., CA

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, New York

    Google Scholar 

  • Sartor JD, Gaboury DR (1984) Street sweeping as a water pollution control measure: lessons learned over the past ten years. Sci Total Environ 33:171–183

    Article  CAS  Google Scholar 

  • Sartor JD, Boyd GB, Agardy FJ (1974) Water pollution aspects of street surface contaminants. Res J Water Pollut Contr Fed 46:458–467

    CAS  Google Scholar 

  • Savenko VS (2006) Chemical Composition of World River’s Suspended Matter. M.: GEOS (in Russian)

  • Sciera KL, Smink JA, Morse JC, Post CJ, Pike JW, English WR, Karanfil T, Hayes JC, Schlautman MA, Klaine SJ (2008) Impacts of land disturbance on aquatic ecosystem health: quantifying the cascade of events. Integrated Environ Assess Manage 4:431–442

    Article  CAS  Google Scholar 

  • Semadeni-Davies A (2004) Urban water management vs climate change: impacts on cold region waste water inflows. Climatic Change 64:103–126

    Article  Google Scholar 

  • Serrano-Belles C, Leharne S (1997) Assessing the potential for lead release from road dusts and soils. Environ Geochem Health 19:89–100

    Article  CAS  Google Scholar 

  • Stone M, Marsalek J (1996) Trace metal composition and speciation in street sediment: Sault Ste. Marie, Canada. Water Air Soil Pollut 87:149–169

    Article  CAS  Google Scholar 

  • Suter GW II (2008) Ecological risk assessment in the United States Environmental Protection Agency: a historical overview. Integrated Environ Assess Manag 4:285–289

    Article  CAS  Google Scholar 

  • Sutherland RA (2003) Lead in grain size fractions of road-deposited sediment. Environ Pollut 121:229–237

    Article  CAS  Google Scholar 

  • Sutherland RA, Pearson DG, Ottley CJ (2007) Grain size partitioning of platinum-group elements in road-deposited sediments: implications for anthropogenic flux estimates from catalysts. Environ Pollut 151:503–515

    Article  CAS  Google Scholar 

  • Taylor KG (2007) Urban environments. In: Perry CT, Taylor KG (eds) Environmental sedimentology. Blackwell, Oxford, pp 191–222

    Google Scholar 

  • Taylor KG, Boult S (2007) The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: a study of a contaminated urban freshwater sediment. Appl Geochem 22:1344–1358

    Article  CAS  Google Scholar 

  • Taylor KG, Boyd NA, Boult S (2003) Sediments, porewaters and diagenesis in an urban water body, Salford, UK: impacts of remediation. Hydrol Process 17:2049–2061

    Article  Google Scholar 

  • Taylor KG, Owens PN, Batalla RJ, Garcia C (2008a) Sediment and contaminant sources and transfers in river basins. In: Owens PN (ed) Sustainable management of sediment resources: sediment management at the river basin scale. Elsevier, Amsterdam, pp 83–135

    Google Scholar 

  • Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008b) Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: a µ-EXAFS, µ-XANES and Raman study. Appl Geochem 23:1623–1633

    Article  CAS  Google Scholar 

  • Taylor KG, Robertson DJ (2009) Electron microbeam analysis of urban road-deposited sediment, Manchester, U.K.: improved source discrimination and metal speciation assessment. App Geochem 24:1261–1269

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particle trace metals. Analytical Chem 51:844–851

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1980) Trace metal speciation in the Yamaska and St. Francois Rivers (Quebec). Canadian J Earth Sci 17:90–105

    CAS  Google Scholar 

  • Thornton I, Watt JM, Davies DJA, Hunt A, Cotter-Howells J, Johnson DL (1994) Lead contamination of UK dusts and soils and implications for childhood exposure—an overview of the work of the Environmental Geochemistry Research Group, Imperial College, London, England, 1981–1992. Environ Geochem Health 16:113–122

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties on non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282

    Article  CAS  Google Scholar 

  • Townsend I, Whitehead P (2003) A preliminary net sediment budget for the Humber estuary. Sci Total Environ 314–316:755–767

    Article  CAS  Google Scholar 

  • Trimble SW (1997) Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 278:1442–1444

    Article  CAS  Google Scholar 

  • UNFPA (2007) State of the world population 2007: unleashing the potential of urban growth. United Nations

  • Van der Perk M, Jetten VG (2006) The use of a simple sediment budget model to estimate long-term contaminant export from small catchments. Geomorphology 79:3–12

    Article  Google Scholar 

  • Van der Perk M, Owens PN, Deeks LK, Rawlins BG, Haygarth PM, Beven KJ (2007) Controls on catchment-scale patterns of phosphorus in soil, streambed sediment and stream water. J Environ Quality 36:694–708

    Article  CAS  Google Scholar 

  • Vergara W, Deeb AM, Valencia AM, Bradley RS, Francou B, Zarzar A, Grunwaldt A, Haeussling SM (2007) Economic impacts of rapid glacier retreat in the Andes. EOS 88:261–264

    Article  Google Scholar 

  • Viers J, Dupre B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407(2):853–868

    Article  CAS  Google Scholar 

  • Viklander M (1998) Particle size distribution and metal content in street sediments. J Environ Eng 124:761–766

    Article  CAS  Google Scholar 

  • Walling DE (2006) Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 79:192–216

    Article  Google Scholar 

  • Walling DE, Collins AL (2007) Suspended sediment sources in British rivers. In: Sediment Budgets, IAHS Publication 291:123–133

  • Walling DE, Owens PN, Leeks GJL (1999) Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol Processes 13:955–975

    Article  Google Scholar 

  • Walling DE, Owens PN, Carter J, Leeks GJL, Lewis S, Meharg AA, Wright J (2003) Storage of sediment-associated nutrients and contaminants in river channels and floodplain systems. Applied Geochem 18:195–220

    Article  CAS  Google Scholar 

  • Walters DM, Leigh DS, Bearden AB (2003) Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia 494:5–10

    Article  Google Scholar 

  • Wanielista MP, Yousef YA, McLellan WM (1997) Non-point source effects on water quality. Res J Water Pollut Contr Fed 46:873–885

    Google Scholar 

  • Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Appl Geochem 18:159–194

    Article  CAS  Google Scholar 

  • Watts CD, Naden PS, Cooper DM, Gannon B (2003) Application of a regional procedure to assess the risk to fish from high sediment concentrations. Sci Total Environ 314–316:551–565

    Article  CAS  Google Scholar 

  • Wei C, Morrison GM (1994a) Platinum in road dusts and urban river sediments. Sci Total Environ 147:169–174

    Article  Google Scholar 

  • Wei C, Morrison GM (1994b) Platinum analysis and speciation in urban gullypots. Anal Chim Acta 284:587–592

    Article  Google Scholar 

  • Westrich B, Förstner U (eds) (2007) Sediment dynamics and pollutant mobility in rivers: an interdisciplinary approach. Springer, Berlin

    Google Scholar 

  • Wetzel DL, Van Vleet ES (2003) Persistence of petroleum hydrocarbon contamination in sediments of the canals of Venice, Italy: 1995 and 1998. Mar Pollut Bull 46:1015–1023

    Article  CAS  Google Scholar 

  • Whiteley JD, Murray F (2003) Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dusts and roadside soils from Perth, Western Australia. Sci Total Environ 317:121–135

    Article  CAS  Google Scholar 

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395

    Article  CAS  Google Scholar 

  • Wolman MG (1967) A cycle of sedimentation and erosion in urban river channels. Geogr Ann 49A:385–395

    Article  Google Scholar 

  • Wölz J, Cofalla C, Hudjutz S, Roger S, Brinkmann M, Schmidt B, Schäffer A, Kammann U, Lennartz G, Hecker M, Schüttrumpf HH (2009) In search for the ecological and toxicological relevance of sediment remobilisation and transport during flood events. J Soils Sediments 9:1–5

    Article  CAS  Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    Article  CAS  Google Scholar 

  • Wu JS, Holman RE, Dorney JR (1996) Systematic evaluation of pollution removal by urban wet detention ponds. J Environ Eng 122:83–988

    Article  Google Scholar 

  • Xie S, Dearing J, Bloemendal J, Boyle J (1999) Association between the organic matter content and magnetic properties in street dust, Liverpool, UK. Sci Total Environ 241:205–214

    Article  CAS  Google Scholar 

  • Yin C, Li L (2008) An investigation on suspended solids sources in urban stormwater runoff using 7Be and 210Pb as tracers. Water Sci Technol 57:1945–1950

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zeller C, Cushing B (2006) Panel discussion: Remedy effectiveness: what works, what doesn’t? Integrated Environ Assess Manag 2:75–79

    Article  Google Scholar 

  • Zhu BQ, Chen YW, Peng JH (2001) Lead isotope geochemistry of the urban environment in the Pearl River Delta. Appl Geochem 16:409–417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Fabienne Carraz, Peter Jackson, Judith Barrett and Davina Robertson for helpful comments and advice that have been incorporated into this paper, and Ulrich Förstner and Wim Salomons for formal reviews. PNO would like to thank Elena Koleniskova for translating Savenko (2006). We would also like to thank the NERC, EPSRC and the Environment Agency of England and Wales for funding research that has contributed to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Taylor.

Additional information

Responsible editors: Kevin G. Taylor • Philip N. Owens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, K.G., Owens, P.N. Sediments in urban river basins: a review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J Soils Sediments 9, 281–303 (2009). https://doi.org/10.1007/s11368-009-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-009-0103-z

Keywords

Navigation