Skip to main content

Advertisement

Log in

Brain cellular senescence in mouse models of Alzheimer’s disease

  • Short Communication
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The accumulation of senescent cells contributes to aging pathologies, including neurodegenerative diseases, and its selective removal improves physiological and cognitive function in wild-type mice as well as in Alzheimer’s disease (AD) models. AD models recapitulate some, but not all components of disease and do so at different rates. Whether brain cellular senescence is recapitulated in some or all AD models and whether the emergence of cellular senescence in AD mouse models occurs before or after the expected onset of AD-like cognitive deficits in these models are not yet known. The goal of this study was to identify mouse models of AD and AD-related dementias that develop measurable markers of cellular senescence in brain and thus may be useful to study the role of cellular senescence in these conditions. We measured the levels of cellular senescence markers in the brains of P301S(PS19), P301L, hTau, and 3xTg-AD mice that model amyloidopathy and/or tauopathy in AD and related dementias and in wild-type, age-matched control mice for each strain. Expression of cellular senescence markers in brains of transgenic P301L and 3xTg-AD mice was largely indistinguishable from that in WT control age-matched mice. In contrast, markers of cellular senescence were differentially increased in brains of transgenic hTau and P301S(PS19) mice as compared to WT control mice before the onset of AD-like cognitive deficits. Taken together, our data suggest that P301S(PS19) and hTau mice may be useful models for the study of brain cellular senescence in tauopathies including, but not limited to, AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Childs BG, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep. 2016;13(4):3391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song, P., J. An, and M.H. Zou, Immune clearance of senescent cells to combat ageing and chronic diseases. Cells, 2020. 9(3).

  5. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  PubMed  Google Scholar 

  7. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  8. Coppe JP, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  CAS  PubMed  Google Scholar 

  10. Anerillas C, Abdelmohsen K, Gorospe M. Regulation of senescence traits by MAPKs. Geroscience. 2020;42(2):397–408.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lopes-Paciencia S, et al. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15–22.

    Article  CAS  PubMed  Google Scholar 

  12. Prata L, et al. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol. 2018;40:101275.

    Article  CAS  PubMed  Google Scholar 

  13. Jeon OH, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lok K, et al. Characterization of the APP/PS1 mouse model of Alzheimer’s disease in senescence accelerated background. Neurosci Lett. 2013;557 Pt B:84–9.

    Article  PubMed  CAS  Google Scholar 

  15. Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology. 2004;5(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Pedro de Magalhães J. From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Experimental Cell Research. 2004;300(1):1–10.

    Article  CAS  Google Scholar 

  17. Prieto, L.I., S.I. Graves, and D.J. Baker, Insights from in vivo studies of cellular senescence. Cells, 2020. 9(4).

  18. Yousefzadeh MJ, et al. Mouse models of accelerated cellular senescence. Methods Mol Biol. 2019;1896:203–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhat, R., et al., Astrocyte senescence as a component of Alzheimer’s disease. PLoS One, 2012. 7(9): p. e45069.

  20. Cohen J, Torres C. Astrocyte senescence: evidence and significance. Aging Cell. 2019;18(3):e12937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang P, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22(5):719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bussian TJ, et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective EBioMedicine. 2017;21:21–8.

    PubMed  Google Scholar 

  24. Akiyama H, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadigh-Eteghad S, et al. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract. 2015;24(1):1–10.

    Article  PubMed  Google Scholar 

  26. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.

    Article  CAS  PubMed  Google Scholar 

  27. Oddo S, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis J, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1487–91.

    Article  CAS  PubMed  Google Scholar 

  29. Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12(1):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hall AM, Roberson ED. Mouse models of Alzheimer’s disease. Brain Res Bull. 2012;88(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  31. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.

    Article  CAS  PubMed  Google Scholar 

  32. Chen XQ, Mobley WC. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric abeta and Tau species. Front Neurosci. 2019;13:659.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Berger Z, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci. 2007;27(14):3650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsia AY, et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A. 1999;96(6):3228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schroeder S, et al. Oligomeric tau-targeted immunotherapy in Tg4510 mice. Alzheimers Res Ther. 2017;9(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Noren Hooten, N. and M.K. Evans, Techniques to induce and quantify cellular senescence. J Vis Exp, 2017(123).

  37. Andorfer C, et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem. 2003;86(3):582–90.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshiyama Y, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51.

    Article  CAS  PubMed  Google Scholar 

  39. Lewis J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25(4):402–5.

    Article  CAS  PubMed  Google Scholar 

  40. Zamzow DR, et al. Higher levels of phosphorylated Y1472 on GluN2B subunits in the frontal cortex of aged mice are associated with good spatial reference memory, but not cognitive flexibility. Age (Dordr). 2016;38(3):50.

    Article  CAS  Google Scholar 

  41. Kent BA, et al. Longitudinal evaluation of Tau-P301L transgenic mice reveals no cognitive impairments at 17 months of age. Brain Behav. 2018;8(1):e00896.

    Article  PubMed  Google Scholar 

  42. Takeuchi H, et al. P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS One. 2011;6(6):e21050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang B, et al. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci. 2012;32(11):3601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Min SW, et al. SIRT1 deacetylates Tau and reduces pathogenic Tau spread in a mouse model of tauopathy. J Neurosci. 2018;38(15):3680–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iba M, et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33(3):1024–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polydoro M, et al. Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci. 2009;29(34):10741–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernandez CM, et al. Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30(7):2442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Irizarry MC, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 1997;56(9):965–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hsiao K, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99–102.

    Article  CAS  PubMed  Google Scholar 

  50. Li L, Liu J, Suo WZ. GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice. J Neuroinflammation. 2008;5:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Parachikova A, Nichol KE, Cotman CW. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis. 2008;30(1):121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saez-Atienzar S, Masliah E. Author Correction: Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci. 2020;21(10):587.

    Article  CAS  PubMed  Google Scholar 

  53. DiBattista AM, Sierra F, Masliah E. NIA workshop on senescence in brain aging and Alzheimer’s disease and its related dementias. Geroscience. 2020;42(2):389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):18–536.

    Article  CAS  Google Scholar 

  55. Musi N, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Belfiore R, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18(1):e12873.

    Article  PubMed  CAS  Google Scholar 

  57. Baker DJ, Sedivy JM. Probing the depths of cellular senescence. J Cell Biol. 2013;202(1):11–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

These studies were supported by NIH/NIA RF1AG057964-01 to VP and VG; Merit Review Award 5I0 1BX002211-05A1 from the US Department of Veterans Affairs Biomedical Laboratory Research and Development Service, 1RF1AG068283-01 the Robert L. Bailey and daughter Lisa K. Bailey Alzheimer’s Fund in memory of Jo Nell Bailey to VG; and a William & Ella Owens Medical Research Foundation Grant, the San Antonio Medical Foundation, and the JMR Barker Foundation to VG, and Diversity Supplement RF1AG057964-01 to RR. These studies were also supported by an award to VG through the NCATS/NIH Clinical and Translational Science Award grant UL1TR002645. AOD was’supported by NIA Training Grant T32AG021890.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veronica Galvan or Viviana I. Perez.

Ethics declarations

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3576 KB)

Supplementary file2 (PNG 831 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorigatti, A.O., Riordan, R., Yu, Z. et al. Brain cellular senescence in mouse models of Alzheimer’s disease. GeroScience 44, 1157–1168 (2022). https://doi.org/10.1007/s11357-022-00531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00531-5

Keywords

Navigation