Skip to main content
Log in

Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Recent studies have shown that renin–angiotensin system overactivation is involved in the aging process in several tissues as well as in longevity and aging-related degenerative diseases by increasing oxidative damage and inflammation. We have recently shown that angiotensin II enhances dopaminergic degeneration by increasing levels of reactive oxygen species and neuroinflammation, and that there is an aging-related increase in angiotensin II activity in the substantia nigra in rats, which may constitute a major factor in the increased risk of Parkinson’s disease with aging. The mechanisms involved in the above mentioned effects and particularly a potential angiotensin–mitochondria interaction have not been clarified. The present study revealed that activation of mitochondrial ATP-sensitive potassium channels [mitoK(ATP)] may play a major role in the angiotensin II-induced effects on aging and neurodegeneration. Inhibition of mitoK(ATP) channels with 5-hydroxydecanoic acid inhibited the increase in dopaminergic cell death induced by angiotensin II, as well as the increase in superoxide/superoxide-derived reactive oxygen species levels and the angiotensin II-induced decrease in the mitochondrial inner membrane potential in cultured dopaminergic neurons. The present study provides data for considering brain renin–angiotensin system and mitoK(ATP) channels as potential targets for protective therapy in aging-associated diseases such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074

    Article  PubMed  CAS  Google Scholar 

  • Babior B (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  • Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    Article  PubMed  CAS  Google Scholar 

  • Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276:33369–33374

    Article  PubMed  CAS  Google Scholar 

  • Basso N, Paglia N, Stella I, de Cavanagh EM, Ferder L, del Rosario Lores Arnaiz M, Inserta F (2005) Protective effect of the inhibition of the renin–angiotensin system on aging. Regul Pept 128:247–252

    Article  PubMed  CAS  Google Scholar 

  • Bednarczyk P (2009) Potassium channels in brain mitochondria. Acta Biochim Pol 56:385–392

    PubMed  CAS  Google Scholar 

  • Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530

    Article  PubMed  CAS  Google Scholar 

  • Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Brandes RP (2005) Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension 45:847–848

    Article  PubMed  CAS  Google Scholar 

  • Brown PC, Sokolove PM, McCann DJ, Stevens JL, Jones TW (1996) Induction of a permeability transition in rat kidney mitochondria by pentachlorobutadienyl cysteine: a beta-lyase-independent process. Arch Biochem Biophys 331:225–231

    Article  PubMed  CAS  Google Scholar 

  • Buckman JF, Hernandez H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ (2001) MitoTracker labelling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods 104:165–176

    Article  PubMed  CAS  Google Scholar 

  • Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T (2004) Targeting mitochondrial ATP-sensitive potassium channels—a novel approach to neuroprotection. Brain Res Brain Res Rev 46:282–294

    Article  PubMed  CAS  Google Scholar 

  • Choi DY, Zhang J, Bing G (2010) Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol Aging 31:1649–1653

    Article  PubMed  CAS  Google Scholar 

  • Collier TJ, Lipton J, Daley F, Palfi S, Chu Y, Sortwell C, Collier TJ, Carvey PM (2007) Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: diminished compensatory mechanisms as a prelude to parkinsonism. Neurobiol Dis 26:56–65

    Article  PubMed  CAS  Google Scholar 

  • Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295:H874–H882

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Muros I, Afonso-Oramas D, Abreu P, Pérez-Delgado MM, Rodríguez M, González-Hernández T (2009) Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiol Aging 30:973–986

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G (2003) Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 17:1183–1185

    PubMed  CAS  Google Scholar 

  • Daiber A (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 1797:897–906

    Article  PubMed  CAS  Google Scholar 

  • de Cavanagh EM, Inserra F, Ferder M, Ferder L (2007) From mitochondria to disease: role of the renin–angiotensin system. Am J Nephrol 27:545–553

    Article  PubMed  Google Scholar 

  • Deng XH, Bertini G, Xu YZ, Yan Z, Bentivoglio M (2006) Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age. Neuroscience 141:645–661

    Article  PubMed  CAS  Google Scholar 

  • Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116

    Article  PubMed  CAS  Google Scholar 

  • Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    Article  PubMed  CAS  Google Scholar 

  • Facundo HT, de Paula JG, Kowaltowski AJ (2007) Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med 42:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 32:804–812

    Article  PubMed  CAS  Google Scholar 

  • Fink B, Laude K, McCann L, Doughan A, Harrison DG, Dikalov S (2004) Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. Am J Physiol Cell Physiol 287:C895–C902

    Article  PubMed  CAS  Google Scholar 

  • Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ (2008) Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. J Neurosci Res 86:1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2003) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J Neurosci 23:1228–1236

    PubMed  CAS  Google Scholar 

  • Garlid KD (2000) Opening mitochondrial K(ATP) in the heart—what happens, and what does not happen. Basic Res Cardiol 95:275–279

    Article  PubMed  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082

    Article  PubMed  CAS  Google Scholar 

  • Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606:1–21

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177

    Article  PubMed  CAS  Google Scholar 

  • Gildea JJ (2009) Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance. Curr Opin Nephrol Hypertens 18:28–32

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson's disease. J Neural Transm Suppl 50:79–88

    PubMed  CAS  Google Scholar 

  • Hu H, Sato T, Seharaseyon J, Liu Y, Johns DC, O'Rourke B, Marban E (1999) Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Mol Pharmacol 55:1000–1005

    PubMed  CAS  Google Scholar 

  • Joglar B, Rodriguez-Pallares J, Rodríguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669

    Article  PubMed  CAS  Google Scholar 

  • Khan F, Spicarová Z, Zelenin S, Holtbäck U, Scott L, Aperia A (2008) Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol 295:F1110–F1116

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y (2005a) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45:860–866

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005b) Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45:438–444

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87:969–980

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–H657

    PubMed  CAS  Google Scholar 

  • Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL (2001) H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276:29251–29256

    Article  PubMed  CAS  Google Scholar 

  • Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, Pascua A, Lu Q, Wang X, Villar VA, Jones JE, Wang Z, Periasamy A, Lau YS, Soares-da-Silva P, Creswell K, Guillemette G, Sibley DR, Eisner G, Gildea JJ, Felder RA, Jose PA (2008) Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin–proteasome pathway in mice and human cells. J Clin Invest 118:2180–2189

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304:539–549

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Maudsley S (2009) Live longer sans the AT1A receptor. Cell Metab 9:403–405

    Article  PubMed  CAS  Google Scholar 

  • McCormack AL, Di Monte DA, Delfani K, Irwin I, DeLanney LE, Langston WJ, Janson AM (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471:387–395

    Article  PubMed  Google Scholar 

  • McCullough JR, Normandin DE, Conder ML, Sleph PG, Dzwonczyk S, Grover GJ (1991) Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res 69:949–958

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai S (2003) The brain renin–angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35:901–918

    Article  PubMed  CAS  Google Scholar 

  • Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, Kroemer G (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells: comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163

    Article  PubMed  CAS  Google Scholar 

  • Michel PP, Ruberg M, Agid G (1997) Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside. J Neurochem 69:1459–1507

    Google Scholar 

  • Min LJ, Mogi M, Iwai M, Horiuchi M (2009) Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 8:113–121

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Shimokawa H, Higashi M, Morikawa K, Matoba T, Hiroki J, Kunihiro I, Talukder HM, Takeshita A (2002) Inhibition of renin–angiotensin system ameliorates endothelial dysfunction associated with aging in rats. Arterioscler Thromb Vasc Biol 22:1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Matsusaka T, Miyata T (2009) Angiotensin II type 1A receptor deficiency and longevity. Nephrol Dial Transplant 24:3280–3281

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16:653–661

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1990) Oxidation reactions in Parkinson’s disease. Neurology 40(Suppl 3):32–39

    PubMed  Google Scholar 

  • Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  PubMed  CAS  Google Scholar 

  • Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Lopez-Real A, Sanchez-Iglesias S, Muñoz A, Soto-Otero R, Labandeira-Garcia JL (2007) Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 28:555–567

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103:145–156

    PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL (2008) Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 31:58–73

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL (2009) The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons. Neurotox Res 15:82–95

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano S, Plaza JJ, Egido J (2001) Role of the renin–angiotensin system in vascular diseases. Expanding the field. Hypertension 38:1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Sasaki N, Seharaseyon J, O'Rourke B, Marban E (2000) Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation 101:2418–2423

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7:97–109

    Article  PubMed  CAS  Google Scholar 

  • Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406–413

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG (1999) Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 261:123–130

    Article  PubMed  CAS  Google Scholar 

  • Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 14:1205–1213

    Article  Google Scholar 

  • Umemoto S (2008) Angiotensin II type 1 (AT1) receptor deficiency halts the progression of age-related atherosclerosis in hypercholesterolemia: molecular link between the AT1 receptor and hypercholesterolemia. Hypertens Res 31:1495–1497

    Article  PubMed  Google Scholar 

  • Ungvari Z, Csiszar A, Kaley G (2004) Vascular inflammation in aging. Herz 29:733–740

    Article  PubMed  Google Scholar 

  • Valero RA, Senovilla L, Núñez L, Villalobos C (2008) The role of mitochondrial potential in control of calcium signals involved in cell proliferation. Cell Calcium 44:259–269

    Article  PubMed  CAS  Google Scholar 

  • Villar-Cheda B, Rodríguez-Pallares J, Muñoz A, Valenzuela R, Guerra MJ, Baltatu OC, Labandeira-Garcia JL (2010a) Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci 32:1695–1706

    Article  PubMed  Google Scholar 

  • Villar-Cheda B, Valenzuela R, Rodriguez-Perez AI et al (2010b) Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol Aging. PMID: 20888078

  • Wadia JS, Chalmers-Redman RM, Ju WJ, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. J Neurosci 18:932–947

    PubMed  CAS  Google Scholar 

  • Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR (2009) Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal 11:1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  • Wu D, Teisman P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC, St John PA, Hu G, Wang H, Wakui M (2006) Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 319:155–164

    Article  PubMed  CAS  Google Scholar 

  • Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA (2006) Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res 99:494–500

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY, McPherson BC, Liu H, Baman TS, Rock P, Yao Z (2002) H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol 282:H1395–H1403

    PubMed  CAS  Google Scholar 

  • Zhang L, Li L, Prabhakaran K, Borowitz JL, Isom GE (2006) Trimethyltin-induced apoptosis is associated with upregulation of inducible nitric oxide synthase and Bax in a hippocampal cell line. Toxicol Appl Pharmacol 216:34–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang GX, Lu XM, Kimura S, Nishiyama A (2007) Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76:204–212

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102:5727–5732

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G (2008) Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Zini S, Tremblay E, Pollard H, Moreau J, Ben-Ari Y (1993) Regional distribution of sulfonylurea receptors in the brain of rodent and primate. Neuroscience 55:1085–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pilar Aldrey and Iria Novoa for their excellent technical assistance. Funding: Spanish Ministry of Science and Innovation, Institute of Health Carlos III (RD06/0010/0013 and CIBERNED), FEDER, and Galician Government (XUGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Luis Labandeira-Garcia.

About this article

Cite this article

Rodriguez-Pallares, J., Parga, J.A., Joglar, B. et al. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. AGE 34, 863–880 (2012). https://doi.org/10.1007/s11357-011-9284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9284-7

Keywords

Navigation