Skip to main content

Advertisement

Log in

Tissue elasticity and the ageing elastic fibre

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The ability of elastic tissues to deform under physiological forces and to subsequently release stored energy to drive passive recoil is vital to the function of many dynamic tissues. Within vertebrates, elastic fibres allow arteries and lungs to expand and contract, thus controlling variations in blood pressure and returning the pulmonary system to a resting state. Elastic fibres are composite structures composed of a cross-linked elastin core and an outer layer of fibrillin microfibrils. These two components perform distinct roles; elastin stores energy and drives passive recoil, whilst fibrillin microfibrils direct elastogenesis, mediate cell signalling, maintain tissue homeostasis via TGFβ sequestration and potentially act to reinforce the elastic fibre. In many tissues reduced elasticity, as a result of compromised elastic fibre function, becomes increasingly prevalent with age and contributes significantly to the burden of human morbidity and mortality. This review considers how the unique molecular structure, tissue distribution and longevity of elastic fibres pre-disposes these abundant extracellular matrix structures to the accumulation of damage in ageing dermal, pulmonary and vascular tissues. As compromised elasticity is a common feature of ageing dynamic tissues, the development of strategies to prevent, limit or reverse this loss of function will play a key role in reducing age-related morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–c
Fig. 3a, b
Fig. 4a–e
Fig. 5a–c

Similar content being viewed by others

References

  • Aaron BB, Gosline JM (1981) Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20:1247–1260. doi:10.1002/bip. 1981.360200611

    CAS  Google Scholar 

  • Agache PG, Monneur C, Leveque JL, Derigal J (1980) Mechanical-properties and youngs modulus of human-skin in vivo. Arch Dermatol Res 269:221–232. doi:10.1007/BF00406415

    CAS  PubMed  Google Scholar 

  • Akhtar R, Schwarzer N, Sherratt MJ, Watson REB, Graham HK, Trafford AW, Mummery PM, Derby B (2009) Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J Mater Res 24:638–646

    Google Scholar 

  • Andreotti L, Bussotti A, Cammelli D, Aiello E, Sampognaro S (1983) Connective-tissue in aging lung. Gerontology 29:377–387. doi:10.1159/000213148

    CAS  PubMed  Google Scholar 

  • Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc - Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003. doi:10.1172/JCI118884

    CAS  PubMed  Google Scholar 

  • Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111:771–791. doi:10.1016/j.pharmthera.2005.12.003

    CAS  PubMed  Google Scholar 

  • Ashcroft GS, Kielty CM, Horan MA, Ferguson MWJ (1997) Age-related changes in the temporal and spatial distributions of fibrillin and elastin mRNAs and proteins in acute cutaneous wounds of healthy humans. J Pathol 183:80–89. doi:10.1002/(SICI)1096-9896(199709)183:1<80::AID-PATH1104>3.0.CO;2-N

    CAS  PubMed  Google Scholar 

  • Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM (1999) Fibrillin degradation by matrix metalloproteinases: Implications for connective tissue remodelling. Biochem J 340:171–181. doi:10.1042/0264-6021:3400171

    CAS  PubMed  Google Scholar 

  • Avolio A, Jones D, Tafazzoli-Shadpour M (1998) Quantification of alterations in structure and function of elastin in the arterial media. Hypertension 32:170–175

    CAS  PubMed  Google Scholar 

  • Bailey AJ (2001) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122:735–755. doi:10.1016/S0047-6374(01)00225-1

    CAS  PubMed  Google Scholar 

  • Baldock C, Koster AJ, Ziese U, Rock MJ, Sherratt MJ, Kadler KE, Adrian Shuttleworth C, Kielty CM (2001) The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 152:1045–1056. doi:10.1083/jcb.152.5.1045

    CAS  PubMed  Google Scholar 

  • Batisse D, Bazin R, Baldeweck T, Querleux B, Leveque JL (2002) Influence of age on the wrinkling capacities of skin. Skin Res Technol 8:148–154. doi:10.1034/j.1600-0846.2002.10308.x

    PubMed  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha(5)beta(1) and alpha(v)beta(3) integrins. J Biol Chem 278:34605–34616. doi:10.1074/jbc.M303159200

    CAS  PubMed  Google Scholar 

  • Bellmunt MJ, Portero M, Pamplona R, Muntaner M, Prat J (1995) AGE-related fluorescence in rat lung collagen. Lung 173:177–185. doi:10.1007/BF00175658

    CAS  PubMed  Google Scholar 

  • Bendeck MP, Langille BL (1991) Rapid accumulation of elastin and collagen in the aortas in sheep in the immediate perinatal-period. Circ Res 69:1165–1169

    CAS  PubMed  Google Scholar 

  • Berry CL, Looker T, Germain J (1972) Nucleic-acid and scleroprotein content of developing human aorta. J Pathol 108:265. doi:10.1002/path.1711080402

    CAS  PubMed  Google Scholar 

  • Bolande RP, Tucker AS (1964) Pulmonary emphysema and other cardiorespiratory lesions as part of Marfan abiotrophy. Pediatrics 33:356

    CAS  PubMed  Google Scholar 

  • Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S, Robinson PN (2005) RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Hum Genet 116:51–61. doi:10.1007/s00439-004-1194-7

    CAS  PubMed  Google Scholar 

  • Braverman IM, Fonferko E (1982) Studies in cutaneous aging: I. The elastic fiber network. J Invest Dermatol 78:434–443. doi:10.1111/1523-1747.ep12507866

    CAS  PubMed  Google Scholar 

  • Brownaugsburger P, Broekelmann T, Mecham L, Mercer R, Gibson MA, Cleary EG, Abrams WR, Rosenbloom J, Mecham RP (1994) Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem 269:28443–28449

    CAS  Google Scholar 

  • Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127:155–165. doi:10.1016/S0021-9150(96)05947-3

    CAS  PubMed  Google Scholar 

  • Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodating lens. Vision Res 42:2235–2251. doi:10.1016/S0042-6989(02)00094-9

    CAS  PubMed  Google Scholar 

  • Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122. doi:10.1002/pmic.200401340

    CAS  PubMed  Google Scholar 

  • Cain SA, Raynal B, Hodson N, Shuttleworth A, Kielty CM (2008) Biomolecular analysis of elastic fibre molecules. Methods 45:42–52. doi:10.1016/j.ymeth.2008.01.005

    CAS  PubMed  Google Scholar 

  • Cantor JO, Shteyngart B, Cerreta JM, Ma SR, Turino GM (2006) Synergistic effect of hydrogen peroxide and elastase on elastic fiber injury in vitro. Exp Biol Med 231:107–111

    CAS  Google Scholar 

  • Cattell MA, Anderson JC, Hasleton PS (1996) Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin Chim Acta 245:73–84. doi:10.1016/0009-8981(95)06174-6

    CAS  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285. doi:10.1023/A:1026028303196

    CAS  PubMed  Google Scholar 

  • Chakravarti B, Chakravarti DN (2007) Oxidative modification of proteins: age-related changes. Gerontology 53:128–139. doi:10.1159/000097865

    CAS  PubMed  Google Scholar 

  • Chen JR, Takahashi M, Kushida K, Suzuki M, Suzuki K, Horiuchi K, Nagano A (2000) Direct detection of crosslinks of collagen and elastin in the hydrolysates of human yellow ligament using single-column high performance liquid chromatography. Anal Biochem 278:99–105. doi:10.1006/abio.1999.4412

    CAS  PubMed  Google Scholar 

  • Chen Z, Seo JY, Kim YK, Lee SR, Kim KH, Cho KH, Eun HC, Chung JH (2005) Heat modulation of tropoelastin, fibrillin-1, and matrix metalloproteinase-12 in human skin in vivo. J Invest Dermatol 124:70–78. doi:10.1111/j.0022-202X.2004.23550.x

    CAS  PubMed  Google Scholar 

  • Chu ML, Tsuda T (2004) Fibulins in development and heritable disease. Birth Defects ResC Embryo Today 72:25–36

    CAS  PubMed  Google Scholar 

  • Corson GM, Charbonneau NL, Keene DR, Sakai LY (2004) Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83:461–472. doi:10.1016/j.ygeno.2003.08.023

    CAS  PubMed  Google Scholar 

  • Cotta-Periera G, Guerro Rodriguez F, Bittencourt-Sampaio S (1978) Oxytalan, elaunin and elastic firbes in human skin. J Invest Dermatol 66:143–148. doi:10.1111/1523-1747.ep12481882

    Google Scholar 

  • Cox RH (1981) Basis for the altered arterial-wall mechanics in the spontaneously hyptertensive rat. Hypertension 3:485–495

    CAS  PubMed  Google Scholar 

  • Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular Biology, 70th edn. Academic Press, San Diego, pp 1–32

    Google Scholar 

  • Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398. doi:10.1016/j.biomaterials.2007.06.025

    CAS  PubMed  Google Scholar 

  • Dahlback K, Ljungquist A, Lofberg H, Dahlback B, Engvall E, Sakai LY (1990) Fibrillin immunoreactive fibers constitute a unique network in the human dermis—immunohistochemical comparison of the distributions of fibrillin, vitronectin, amyloid-p component, and orcein stainable structures in normal skin and elastos. J Invest Dermatol 94:284–291. doi:10.1111/1523-1747.ep12874430

    CAS  PubMed  Google Scholar 

  • Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF (1995) Dual role for the latent transforming growth-factor-beta binding-protein in storage of latent TGF-beta in the extracellular-matrix and as a structural matrix protein. J Cell Biol 131:539–549. doi:10.1083/jcb.131.2.539

    CAS  PubMed  Google Scholar 

  • Davidson JM, Hill KE, Alford JL (1986) Developmental changes in collagen and elastin biosynthesis in the porcine aorta. Dev Biol 118:103–111. doi:10.1016/0012-1606(86)90077-1

    CAS  PubMed  Google Scholar 

  • Davis EC (1993) Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100:17–26. doi:10.1007/BF00268874

    CAS  PubMed  Google Scholar 

  • deCarvalho HF, Taboga SR (1996) Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections. Histochem Cell Biol 106:587–592

    CAS  Google Scholar 

  • DeGroot J (2004) The AGE of the matrix: chemistry, consequence and cure. Curr Opin Pharmacol 4:301–305

    CAS  PubMed  Google Scholar 

  • Denton CP, Abraham DJ (2001) Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 13:505–511

    CAS  PubMed  Google Scholar 

  • Derrico A, Scarani P, Colosimo E, Spina M, Grigioni WF, Mancini AM (1989) Chnages in the alveolar connective-tissue of the aging lung - an immunohistochemcial study. Virchows Arch A Pathol Anat Histopathol 415:137–144

    CAS  Google Scholar 

  • Diridollou S, Berson M, Vabre V, Black D, Karlsson B, Auriol F, Gregoire JM, Yvon C, Vaillant L, Gall Y, Patat F (1998) An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound Med Biol 24:215–224

    CAS  PubMed  Google Scholar 

  • Diridollou S, Vienne MP, Alibert M, Aquilina C, Briant A, Dahan S, Denis P, Launais B, Turlier V, Dupuy P (1999) Efficacy of topical 0.05% retinaldehyde in skin aging by ultrasound and rheological techniques. Dermatology 199:37–41

    CAS  PubMed  Google Scholar 

  • Doubal S, Klemera P (2002) Visco-elastic response of human skin and aging. J. Am Aging Assoc 25:115–117

    Google Scholar 

  • Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA (1996) Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 85:597–605

    CAS  PubMed  Google Scholar 

  • El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J (2002) Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 11:398–405

    CAS  PubMed  Google Scholar 

  • Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG (1989) Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 93:353–357

    CAS  PubMed  Google Scholar 

  • Escolar JD, Gallego B, Tejero C, Escolar MA (1994) Changes occuring with increasing age in the rat lung: morphometrical study. Anat Rec 239:287–296

    CAS  PubMed  Google Scholar 

  • Escolar JD, Mateos J, Alfaro E, Escolar MA, Minana C, Roche P (1993) Goodpasture’s syndrome in aging. An experimental study on the rat. 1. Histol Histopathol 8:599–608

    CAS  PubMed  Google Scholar 

  • Escolar JD, Tejero C, Escolar MA, Montalvo F, Garisa R (1997) Architecture, elastic fiber, and collagen in the distal air portion of the lung of the 18-month-old rat. Anat Rec 248:63–69

    CAS  PubMed  Google Scholar 

  • Faury G (2001) Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol 49:310–325

    CAS  PubMed  Google Scholar 

  • Finlay B (1970) Dynamic mechanical testing of human skin in-vivo. J Biomech 3:557–568

    CAS  PubMed  Google Scholar 

  • Finnis ML, Gibson MA (1997) Microfibril-associated glycoprotein-1 (MAGP-1) binds to the pepsin-resistant domain of the alpha 3(VI) chain of type VI collagen. J Biol Chem 272:22817–22823

    CAS  PubMed  Google Scholar 

  • Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    CAS  PubMed  Google Scholar 

  • Fitzpatrick M, Hospelhorn VD (1962) Studies on human pulmonary connective tissue. 1. Amino acid composition of leastins isolated by alkaline digestion. J Lab Clin Med 60:799–810

    CAS  PubMed  Google Scholar 

  • Fredberg JJ, Kamm RD (2006) Stress transmission in the lung: pathways from organ to molecule. Annu Rev Physiol 68:507–541

    CAS  PubMed  Google Scholar 

  • Fukuda Y, Masuda Y, Ishizaki M, Masugi Y, Ferrans VJ (1989) Morphogenesis of abnormal elastic fibers in lungs of patients with panacinar and centriacinar emphysema. Hum Pathol 20:652–659

    CAS  PubMed  Google Scholar 

  • Gadek JE, Fells GA, Zimmerman RL, Crystal RG (1984) Role of connective-tissue proteases in the pathogenesis of chronic inflammatory lung-disease. Environ Health Perspect 55:297–306

    CAS  PubMed  Google Scholar 

  • Gallagher WM, Currid CA, Whelan LC (2005) Fibulins and cancer: friend or foe? Trends Mol Med 11:336–340

    CAS  PubMed  Google Scholar 

  • Gardi C, Martorana PA, Desanti MM, Vaneven P, Lungarella G (1989) A biochemcial and morphological investigation of the early development of genetic emphysema in tight-skin mice. Exp Mol Pathol 50:398–410

    CAS  PubMed  Google Scholar 

  • Gibson MA, Sandberg LB, Grosso LE, Cleary EG (1991) Complementary-DNA cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete component of the elastin-associated microfibrils. J Biol Chem 266:7596–7601

    CAS  PubMed  Google Scholar 

  • Glab J, Wess T (2008) Changes in the molecular packing of fibrillin microfibrils during extension indicate intrafibrillar and interfibrillar reorganization in elastic response. J Mol Biol 383:1171–1180

    CAS  PubMed  Google Scholar 

  • Goldstein RH (1982) Response of the aging hamster lung to elastase injury. Am Rev Respir Dis 125:295–298

    CAS  PubMed  Google Scholar 

  • Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic Proteins: Biological Roles and Mechanical Properties. Philos Trans R Soc Lond B Biol Sci 357:121–132

    CAS  PubMed  Google Scholar 

  • Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211:157–172

    CAS  PubMed  Google Scholar 

  • Haenold R, Wassef DM, Heinemann SH, Hoshi T (2005) Oxidative damage, aging and anti-aging strategies. Age 27:183–199

    CAS  Google Scholar 

  • Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS (1992) Altered cellular interactions between endotehlial-cells and nonenzymaticallu glucosylated laminin type-IV collagen. J. Biol Chem 267:12404–12407

    CAS  PubMed  Google Scholar 

  • Handford PA, Downing AK, Reinhardt DP, Sakai LY (2000) Fibrillin: from domain structure to supramolecular assembly. Matrix Biol 19:457–470

    CAS  PubMed  Google Scholar 

  • Henderson M, Polewski R, Fanning JC, Gibson MA (1996) Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique. J Histochem Cytochem 44:1389–1397

    CAS  PubMed  Google Scholar 

  • Hosoda Y, Kawano K, Yamasawa F, Ishii T, Shibata T, Inayama S (1984) Age-dependent changes of collagen and elastin content in human aorta and pulmonary-artery. Angiology 35:615–621

    CAS  PubMed  Google Scholar 

  • Huang KW, Mitzner W, Rabold R, Schofield B, Lee H, Biswal S, Tankersley CG (2007) Variation in senescent-dependent lung changes in inbred mouse strains. J Appl Physiol 102:1632–1639

    PubMed  Google Scholar 

  • Hubmacher D, Tiedemann K, Reinhardt DP (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol75:93–123

    CAS  PubMed  Google Scholar 

  • Hyde DM, Robinson NE, Gillespie JR, Tyler WS (1977) Morphometry of distal air spaces in lungs of aging dogs. J Appl Physiol 43:86–91

    CAS  PubMed  Google Scholar 

  • Hyytiainen M, Penttinen C, Keski-Oja J (2004) Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci 41:233–264

    PubMed  Google Scholar 

  • Ito S, Ishimaru S, Wilson SE (1997) Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells. 44th Annual Meeting of the American College of Angiology. Westminster, Las Vegas, pp 289–297

    Google Scholar 

  • Jacobs AM, Toudjarska I, Racine A, Tsipouras P, Kilpatrick MW, Shanske A (2002) A recurring FBN1 gene mutation in neonatal Marfan syndrome. Arch Pediatr Adolesc Med 156:1081–1085

    PubMed  Google Scholar 

  • Janssens JP, Pache JC, Nicod LP (1999) Physiological changes in respiratory function associated with ageing. Eur Respir J 13:197–205

    CAS  PubMed  Google Scholar 

  • Jeanmaire C, Danoux L, Pauly G (2001) Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol 145:10–18

    CAS  PubMed  Google Scholar 

  • Jennissen HP (1995) Ubiquitin and the enigma of intracellular protein-degradation. Eur J Biochem 231:1–30

    CAS  PubMed  Google Scholar 

  • Jensen SA, Reinhard DP, Gibson MA, Weiss AS (2001) Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem 276:39661–39666

    CAS  PubMed  Google Scholar 

  • John R, Thomas J (1972) Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem J 127:261–269

    CAS  PubMed  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316:1–11

    CAS  PubMed  Google Scholar 

  • Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153:607–612

    CAS  PubMed  Google Scholar 

  • Keeley FW, Bellingham CM, Woodhouse KA (2002) Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin. Philos Trans R Soc B Biol Sci 357:185–189

    CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436

    CAS  PubMed  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    CAS  PubMed  Google Scholar 

  • Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA (2007) Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc B Biol Sci 362:1293–1312

    CAS  Google Scholar 

  • Kielty CM, Woolley DE, Whittaker SP, Shuttleworth CA (1994) Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Let 351:85–89

    CAS  PubMed  Google Scholar 

  • Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH (2006) Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J Lipid Res 47:921–930

    CAS  PubMed  Google Scholar 

  • Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121:2696–2704

    CAS  PubMed  Google Scholar 

  • Kitaoka H, Nieman GF, Fujino Y, Carney D, DiRocco J, Kawase I (2007) A 4-dimensional model of the alveolar structure. J Physiol Sci 57:175–185

    PubMed  Google Scholar 

  • Knudson RJ, Clark DF, Kennedy TC, Knudson DE (1977) Effect of aging alone on the mechanical-properties of normal adult human lung. J Appl Physiol 43:1054–1062

    CAS  PubMed  Google Scholar 

  • Konova E, Baydanoff S, Atanasova M, Velkova A (2004) Age-related changes in the glycation of human aortic elastin. Exp Gerontol 39:249–254

    CAS  PubMed  Google Scholar 

  • Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fassler R, Chu ML (2001) Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol 21:7025–7034

    CAS  PubMed  Google Scholar 

  • Lai-Fook SJ, Hyatt RE (2000) Effects of age on elastic moduli of human lungs. J Appl Physiol 89:163–168

    CAS  PubMed  Google Scholar 

  • Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347

    CAS  PubMed  Google Scholar 

  • Lang MR, Fiaux GW, Gillooly M, Stewart JA, Hulmes DJS, Lamb D (1994) Collagen content of alveolar wall tissue in emphysematous and non-emphysematous lungs. Thorax 49:319–326

    CAS  PubMed  Google Scholar 

  • Lariviere R, Lebel M (2003) Endothelin-1 in chronic renal failure and hypertension. Can J Physiol Pharmacol 81:607–621

    CAS  PubMed  Google Scholar 

  • Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18:278–292

    CAS  PubMed  Google Scholar 

  • Lederle FA, Larson JC, Margolis KL, Allison MA, Freiberg MS, Cochrane BB, Graettinger WF, Curb JD (2008) Abdominal aortic aneurysm events in the women’s health initiative: cohort study. BMJ 337:5

    Google Scholar 

  • Lee SSJ, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12:717–729

    CAS  PubMed  Google Scholar 

  • Lemaire R, Bayle J, Mecham RP, Lafyatis R (2007) Microfibril-associated MAGP-2 stimulates elastic fiber assembly. J Biol Chem 282:800–808

    CAS  PubMed  Google Scholar 

  • Leveque JL, Rigal JD, Agache PG, Monneur C (1980) Influence of aging on the in vivo extensibility of human-skin at a low stress. Arch Dermatol Res 269:127–135

    CAS  PubMed  Google Scholar 

  • Lillie MA, Gosline JM (2007) Limits to the durability of arterial elastic tissue. Biomaterials 28:2021–2031

    CAS  PubMed  Google Scholar 

  • Maurel E, Shuttleworth CA, Bouissou H (1987) Interstitial collagens and aging in human aorta. Virchows Arch A Pathol Anat Histopathol 410:383–390

    CAS  PubMed  Google Scholar 

  • McConnell CJ, DeMont ME, Wright GM (1997) Microfibrils provide non-linear elastic behaviour in the abdominal artery of the lobster Homarus americanus. J Physiol 499:513–526

    CAS  PubMed  Google Scholar 

  • McEniery CM, Wilkinson IB, Avolio AP (2007) Age, hypertension and arterial function. Clin Exp Pharmacol Physiol 34:665–671

    CAS  PubMed  Google Scholar 

  • McNulty M, Spiers P, McGovern E, Feely J (2005) Aging is associated with increased matrix metalloproteinase-2 activity in the human aorta. Am J Hypertens 18:504–509

    CAS  PubMed  Google Scholar 

  • Mecham RP, Davis EC (1994) Elastic fiber structure and assembly. Academic Press, New York

    Google Scholar 

  • Megill WM, Gosline JM, Blake RW (2005) The modulus of elasticity of fibrillin-containing elastic fibres in the mesoglea of the hydromedusa Polyorchis penicillatus. J Exp Biol 208:3819–3834

    PubMed  Google Scholar 

  • Merrilees MJ, Ching PST, Beaumont B, Hinek A, Wight TN, Black PN (2008) Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease. Respir Res 9:9

    Google Scholar 

  • Merrilees MJ, Lemire JM, Fischer JW, Kinsella MG, Braun KR, Clowes AW, Wight TN (2002) Retrovirally mediated overexpression of versican V3 by arterial smooth muscle cells induces tropoelastin synthesis and elastic fiber formation in vitro and in neointima after vascular injury. Circ Res 90:481–487

    CAS  PubMed  Google Scholar 

  • Meyer KC, Rosenthal NS, Soergel P, Peterson K (1998) Neutrophils and low-grade inflammation in the seemingly normal aging human lung. Mech Ageing Dev 104:169–181

    CAS  PubMed  Google Scholar 

  • Mikulikova K, Eckhardt A, Kunes J, Zicha J, Miksik I (2008) Advanced glycation end-product pentosidine accumulates in various tissues of rats with high fructose intake. Physiol Res 57:89–94

    CAS  PubMed  Google Scholar 

  • Milewicz DM, Duvic M (1994) Severe neonatal marfan-syndrome resulting from a de-novo 3-bp insertion into the fibrillin gene on chromosome-15. Am J Hum Genet 54:447–453

    CAS  PubMed  Google Scholar 

  • Milewicz DM, Urbán Z, Boyd C (2000) Genetic disorders of the elastic fiber system. Matrix Biol 19:471–480

    CAS  PubMed  Google Scholar 

  • Mitchell GF (2008) Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol 105:1652–1660

    PubMed  Google Scholar 

  • Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    CAS  PubMed  Google Scholar 

  • Miyazono K, Olofsson A, Colosetti P, Heldin CH (1991) A role for the latent TGF-beta-1 binding prtoein in the assembly and secretion of TGF-beta-1. EMBO J 10:1091–1101

    CAS  PubMed  Google Scholar 

  • Mizutari K, Ono T, Ikeda K, Kayashima K, Horiuchi S (1997) Photo-enhanced modification of human skin elastin in actinic elastosis by N-epsilon-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol 108:797–802

    CAS  PubMed  Google Scholar 

  • Nagase T, Fukuchi Y, Teramoto S, Matsuse T, Orimo H (1994) Mechanical interdependence in relation to age: effects of lung volume on airway-resitance in rats. J Appl Physiol 77:1172–1177

    CAS  PubMed  Google Scholar 

  • Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J, Honjo T, Chien KR (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415:171–175

    CAS  PubMed  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    CAS  PubMed  Google Scholar 

  • Nilsson PM (2005) Reducing the risk of stroke in elderly patients with hypertension - A critical review of the efficacy of antihypertensive drugs. Drugs Aging 22:517–524

    CAS  PubMed  Google Scholar 

  • O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    PubMed  Google Scholar 

  • O’Rourke MF, Blazek JV, Morreels CL, Krovetz LJ (1968) Pressure wave transmission along human aorta. Changes with age and in arterial degenerative disease. Circ Res 23:567–579

    PubMed  Google Scholar 

  • Onambele GL, Narici MV, Maganaris CN (2006) Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 100:2048–2056

    PubMed  Google Scholar 

  • Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nat Rev Genet 3:165–175

    CAS  PubMed  Google Scholar 

  • Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310

    CAS  PubMed  Google Scholar 

  • Pearson AC, Guo RQ, Orsinelli DA, Binkley PF, Pasierski TJ (1994) Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic-wall size, thickness, and stiffness. Am Heart J 128:344–351

    CAS  PubMed  Google Scholar 

  • Penner AS, Rock MJ, Kielty CM, Shipley JM (2002) Microfibril-associated glycoprotein-2 interacts with fibrillin-1 and fibrillin-2 suggesting a role for MAGP-2 in elastic fiber assembly. J Biol Chem 277:35044–35049

    CAS  PubMed  Google Scholar 

  • Pierard GE (1999) EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 1: Relevance to the structures and ageing of the skin and subcutaneous tissues. Skin Pharmacol Appl Skin Physiol 12:352–362

    CAS  PubMed  Google Scholar 

  • Pierce JA, Hocott JB (1960) Studies on the collagen and elastin content of the human lung. J Clin Invest 39:8–14

    CAS  PubMed  Google Scholar 

  • Pinkerton KE, Barry BE, Oneil JJ, Raub JA, Pratt PC, Crapo JD (1982) Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am J Anat 164:155–174

    CAS  PubMed  Google Scholar 

  • Powell JT, Vine N, Crossman M (1992) On the accumulation of D-aspartate in elastin and other proteins of the aging aorta. Atherosclerosis 97:201–208

    CAS  PubMed  Google Scholar 

  • Qian RQ, Glanville RW (1997) Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry 36:15841–15847

    CAS  PubMed  Google Scholar 

  • Quaglino D, Pasquali-Ronchetti I (2002) Morphology and chemical composition of connective tissue: the cardiovascular system. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley, New York, pp 121–144

    Google Scholar 

  • Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschodrich-Rotter M, Peters R, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112:1093–1100

    CAS  PubMed  Google Scholar 

  • Raghunath M, Unsold C, Kubitscheck U, Bruckner-Tuderman L, Peters R, Meuli M (1998) The cutaneous microfibrillar apparatus contains latent transforming growth factor-beta binding protein-1 (LTBP-1) and is a repository for latent TGF-beta-1. J Invest Dermatol 111:559–564

    CAS  PubMed  Google Scholar 

  • Ramirez F, Pereira L (1999) The fibrillins. Int J Biochem Cell Biol 31:255–259

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Gohring W, Timpl R, Sakai LY (1996) Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271:19489–19496

    CAS  PubMed  Google Scholar 

  • Repine JE, Bast A, Lankhorst I, deBacker W, Dekhuijzen R, Demedts M, vanHerwaarden C, vanKlaveren R, Lammers JW, Larsson S, Lundback B, Petruzelli S, Postma D, Riise G, Vermeire P, Wouters E, Yernault JC, vanZandwijk N (1997) Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 156:341–357

    CAS  PubMed  Google Scholar 

  • Rijken F, Kiekens RCM, Bruijnzeel PLB (2005) Skin-infiltrating neutrophils following exposure to solar-simulated radiation could play an important role in photoageing of human skin. Br J Dermatol 152:321–328

    CAS  PubMed  Google Scholar 

  • Ritz-Timme S, Laumeier I, Collins MJ (2003) Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 149:951–959

    CAS  PubMed  Google Scholar 

  • Robbesom AA, Koenders M, Smits NC, Hafmans T, Versteeg EMM, Bulten J, Veerkamp JH, Dekhuijzen PNR, van Kuppevelt TH (2008) Aberrant fibrillin-1 expression in early emphysematous human lung: a proposed predisposition for emphysema. Mod Pathol 21:297–307

    CAS  PubMed  Google Scholar 

  • Robert L, Robert AM, Fulop T (2008) Rapid increase in human life expectancy: will it soon be limited by the aging of elastin? Biogerontology 9:119–133

    CAS  PubMed  Google Scholar 

  • Robinson PN, Booms P (2001) The molecular pathogenesis of the Marfan syndrome. Cell Mol Life Sci 58:1698–1707

    CAS  PubMed  Google Scholar 

  • Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS, Kielty CM (2004) Molecular basis of elastic fiber formation: critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem 279:23748–23758

    CAS  PubMed  Google Scholar 

  • Rodrigues L (2001) EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 2: Instrumentation and test modes. Skin Pharmacol Appl Skin Physiol 14:52–67

    CAS  PubMed  Google Scholar 

  • Ronchetti IP, Alessandrini A, Contri MB, Fornieri C, Mori G, Quaglino D, Valdre U (1998) Study of elastic fiber organization by scanning force microscopy. Matrix Biol 17:75–83

    CAS  Google Scholar 

  • Rucker RB, Tinker D (1977) Structure and metabolism of arterial elastin. Int Rev Exp Pathol 17:1–47

    CAS  PubMed  Google Scholar 

  • Ruitenbeek AG, van der Cammen TJM, van den Meiracker AH, Mattace-Raso FUS (2008) Age and blood pressure levels modify the functional properties of central but not peripheral arteries. Angiology 59:290–295

    PubMed  Google Scholar 

  • Saarialho-Kere U, Kerkela E, Jeskanen L, Hasan T, Pierce R, Starcher B, Raudasoja R, Ranki A, Oikarinen A, Vaalamo M (1999) Accumulation of matrilysin (MMP-7) and macrophage metalloelastase (MMP-12) in actinic damage. J Invest Dermatol 113:664–672

    CAS  PubMed  Google Scholar 

  • Sander CS, Chang H, Salzmann S, Muller CSL, Ekanayake-Mudiyanselage S, Elsner P, Thiele JJ (2002) Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol 118:618–625

    CAS  PubMed  Google Scholar 

  • Sanders R (1973) Torsional elasticity of human skin in vivo. Pflugers Arch 342:225–260

    Google Scholar 

  • Sayers CP, Goltz RW, Mottaz J (1975) Pulmonary elastic tissue in generalized elastolysis (Cutis-Laxa) and Marfans-Syndrome: light and electron microscopic study. J Invest Dermatol 65:451–457

    CAS  PubMed  Google Scholar 

  • Shapiro BP, Owan TE, Mohammed SF, Meyer DM, Mills LD, Schalkwijk CG, Redfield MM (2008) Advanced glycation end products accumulate in vascular smooth muscle and modify vascular but not ventricular properties in elderly hypertensive canines. Circulation 118:1002–1010

    CAS  PubMed  Google Scholar 

  • Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    CAS  PubMed  Google Scholar 

  • Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJP, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332:183–193

    CAS  PubMed  Google Scholar 

  • Sherratt MJ, Bastrilles JY, Bowden JJ, Watson REB, Griffiths CEM (2006) Age-related deterioration in the mechanical function of human dermal fibrillin microfibrils. Br J Dermatol 155:240–241

    Google Scholar 

  • Sherratt MJ, Holmes DF, Shuttleworth CA, Kielty CM (1997) Scanning transmission electron microscopy mass analysis of fibrillin-containing microfibrils from foetal elastic tissues. Int J Biochem Cell Biol 29:1063–1070

    CAS  PubMed  Google Scholar 

  • Sherratt MJ, Watson REB, Griffiths CEM (2007) Molecular structure and function in ageing elastic fibres. Age 29:112–112

    Google Scholar 

  • Silverman DI, Burton KJ, Gray J, Bosner MS, Kouchoukos NT, Roman MJ, Boxer M, Devereux RB, Tsipouras P (1995) Life expectancy in the Marfan syndrome. Am J Cardiol 75:157–160

    CAS  PubMed  Google Scholar 

  • Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ (1996) The role of glycation cross-links in diabetic vascular stiffening. Diabetologia 39:946–951

    CAS  PubMed  Google Scholar 

  • Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283:8796–8801

    CAS  PubMed  Google Scholar 

  • Smalls LK, Wickett RR, Visscher MO (2006) Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties. Skin Res Technol 12:43–49

    PubMed  Google Scholar 

  • Snider GL, Kleinerman JL, Thurlbeck WM, Bengali ZH (1985) The definition of emphysema: report of a National Heart, Lung and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132:182–185

    Google Scholar 

  • Staloff IA, Guan E, Katz S, Rafailovitch M, Sokolov A, Sokolov S (2008) An in vivo study of the mechanical properties of facial skin and influence of aging using digital image speckle correlation. Skin Res Technol 14:127–134

    PubMed  Google Scholar 

  • Suwabe H, Serizawa A, Kajiwara H, Ohkido M, Tsutsumi Y (1999) Degenerative processes of elastic fibers in sun-protected and sun-exposed skin: immunoelectron microscopic observation of elastin, fibrillin-1, amyloid P component, lysozyme and alpha(1)-antitrypsin. Pathol Int 49:391–402

    CAS  PubMed  Google Scholar 

  • Taddese S, Weiss AS, Neubert RHH, Schmelzer CEH (2008) Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biol 27:420–428

    CAS  PubMed  Google Scholar 

  • Takema Y, Imokawa G (1998) The effects of UVA and UVB irradiation on the viscoelastic properties of hairless mouse skin in vivo. Dermatology 196:397–400

    CAS  PubMed  Google Scholar 

  • Takema Y, Yorimoto Y, Kawai M, Imokawa G (1994) Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol 131:641–648

    CAS  PubMed  Google Scholar 

  • Takubo Y, Hirai T, Muro S, Kogishi K, Hosokawa M, Mishima M (1999) Age-associated changes in elastin and collagen content and the proportion of types I and III collagen in the lungs of mice. Exp Gerontol 34:353–364

    CAS  PubMed  Google Scholar 

  • Tatti O, Vehvilainen P, Lehti K, Keski-Oja J (2008) MT1-MMP releases latent TGF-beta 1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res 314:2501–2514

    CAS  PubMed  Google Scholar 

  • Teramoto S, Matsuse T, Ouchi Y (1999) Physiological changes in respiratory function associated with ageing. Eur Respir J 14:1454–1455

    CAS  PubMed  Google Scholar 

  • Thurmond FA, Koob TJ, Bowness JM, Trotter JA (1997) Partial biochemical and immunologic characterization of fibrillin microfibrils from sea cucumber dermis. Connect Tissue Res 36:211–222

    Article  CAS  PubMed  Google Scholar 

  • Thurmond FA, Trotter JA (1996) Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J Exp Biol 199:1817–1828

    PubMed  Google Scholar 

  • Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    CAS  PubMed  Google Scholar 

  • Toonkool P, Regan DG, Kuchel PW, Morris MB, Weiss AS (2001) Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies. J Biol Chem 276:28042–28050

    CAS  PubMed  Google Scholar 

  • Trask BC, Trask TM, Broekelmann T, Mechame RP (2000) The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell 11:1499–1507

    CAS  PubMed  Google Scholar 

  • Tsilibary EC, Charonis AS, Reger LA, Wohlhueter RM, Furcht LT (1988) The effect of nonenzymatic glucosylation on the binding of the main noncollagneous NC1 domain to type-IV collagen. J Biol Chem 263:4302–4308

    CAS  PubMed  Google Scholar 

  • Tsuji T, Hamada T (1981) Age-related changes in human dermal elastic fibers. Br J Dermatol 105:57–63

    CAS  PubMed  Google Scholar 

  • Tsuruga E, Irie K, Yajima T (2007) Fibrillin-2 degradation by matrix metalloproteinase-2 in periodontium. J Dent Res 86:352–356

    CAS  PubMed  Google Scholar 

  • Turner JM, Mead J, Wohl ME (1968) Elasticity of human lungs in relation to age. J Appl Physiol 25:664–671

    CAS  PubMed  Google Scholar 

  • Umeda H, Nakamura F, Suyama K (2001) Oxodesmosine and isooxodesmosine, candidates of oxidative metabolic intermediates of pyridinium cross-links in elastin. Arch Biochem Biophys 385:209–219

    CAS  PubMed  Google Scholar 

  • Unsold C, Hyytiainen M, Bruckner-Tuderman L, Keski-Oja J (2001) Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 114:187–197

    CAS  PubMed  Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, Xu J, Parker T (2002) Elastin: a representative ideal protein elastomer. Philos Trans R Soc B Biol Sci 357:169–184

    CAS  Google Scholar 

  • Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, Vandewoestijne KP (1992) The senile lung—comparison with nomral and emphysematous lungs. 1. Structural aspects. Chest 101:793–799

    CAS  PubMed  Google Scholar 

  • Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JWJ, Lafeber F, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031

    CAS  PubMed  Google Scholar 

  • Viegi G, Scognamiglio A, Baldacci S, Pistelli F, Carrozzi L (2001) Epidemiology of chronic obstructive pulmonary disease (COPD). Respiration 68:4–19

    CAS  PubMed  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071

    CAS  PubMed  Google Scholar 

  • Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G, Milewicz DM (2003) Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones. J Cell Biochem 90:641–652

    CAS  PubMed  Google Scholar 

  • Warren R, Gartstein V, Kligman AM, Montagna W, Allendorf RA, Ridder GM (1991) Age, sunlight, and facial skin: a histologic and quantitative study. J Am Acad Dermatol 25:751–760

    CAS  PubMed  Google Scholar 

  • Watanabe M, Sawai T, Nagura H, Suyama K (1996) Age-related alteration of cross-linking amino acids of elastin in human aorta. Tohoku J Exp Med 180:115–130

    CAS  PubMed  Google Scholar 

  • Watson REB, Craven NM, Kang SW, Jones CJP, Kielty CM, Griffiths CEM (2001) A short-term screening protocol, using fibrillin-1 as a reporter molecule, for photoaging repair agents. J Invest Dermatol 116:672–678

    CAS  PubMed  Google Scholar 

  • Watson REB, Griffiths CEM, Craven NM, Shuttleworth CA, Kielty CM (1999) Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J Invest Dermatol 112:782–787

    CAS  PubMed  Google Scholar 

  • Watson REB, Long SP, Bowden JJ, Bastrilles JY, Barton SP, Griffiths CEM (2008) Repair of photoaged dermal matrix by topical application of a cosmetic ‘antiageing’ product. Br J Dermatol 158:472–477

    CAS  PubMed  Google Scholar 

  • Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY (2000) Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 23:320–326

    CAS  PubMed  Google Scholar 

  • Werth VP, Shi X, Kalathil E, Jaworsky C (1996) Elastic fiber-associated proteins of skin in development and photoaging. Photochem Photobiol 63:308–313

    CAS  PubMed  Google Scholar 

  • Wess J, Purslow PP, Sherratt MJ, Ashworth J, Shuttleworth CA, Kielty CM (1998) Calcium determines the supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 141:829–837

    CAS  PubMed  Google Scholar 

  • Wilson TA, Bachofen H (1982) A model for mechanical strcutre of the alveolar duct. J Appl Physiol 52:1064–1070

    CAS  PubMed  Google Scholar 

  • Wlaschek M, Tantcheva-Poor I, Naderi L, Ma WJ, Schneider A, Razi-Wolf Z, Schuller J, Scharffetter-Kochanek K (2001) Solar UV irradiation and dermal photoaging. J Photochem Photobiol B 63:41–51

    CAS  PubMed  Google Scholar 

  • Yaar M, Gilchrest BA (2007) Photoageing: mechanism, prevention and therapy. Br J Dermatol 157:874–887

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Tanaka A, Kanamaru A, Tanaka S, Tsubone H, Atoji Y, Suzuki Y (2003) Morphology of aging lung in F344/N rat: alveolar size, connective tissue, and smooth muscle cell markers. Anat Rec A Discov Mol Cell Evol Biol 272:538–547

    PubMed  Google Scholar 

  • Yamauchi M, Woodley DT, Mechanic GL (1988) Aging and cross-linking of skin collagen. Biochem Biophys Res Commun 152:898–903

    CAS  PubMed  Google Scholar 

  • Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129:1165–1176

    CAS  PubMed  Google Scholar 

  • Zhang MC, Pierce RA, Wachi H, Mecham RP, Parks WC (1999) An open reading frame element mediates posttranscriptional regulation of tropoelastin and responsiveness to transforming growth factor beta 1. Mol Cell Biol 19:7314–7326

    CAS  PubMed  Google Scholar 

  • Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943

    CAS  PubMed  Google Scholar 

  • Zulliger MA, Stergiopulos N (2007) Structural strain energy function applied to the ageing of the human aorta. J Biomech 40:3061–3069

    PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to Prof. Cay Kielty and Dr. Nigel Hodson for providing the microscopic images of coacervated tropoelastin, and to Drs. Carolyn Jones and Riaz Akhtar for the micrographs of human ciliary zonules and ferret aorta. I would also like to thank Drs. Helen Graham and David Holmes for reading and commenting on the manuscript and Research into Ageing for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sherratt.

About this article

Cite this article

Sherratt, M.J. Tissue elasticity and the ageing elastic fibre. AGE 31, 305–325 (2009). https://doi.org/10.1007/s11357-009-9103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-009-9103-6

Keywords

Navigation