Skip to main content
Log in

Assessment of 17α-ethinylestradiol effects in Daphnia magna: life-history traits, biochemical and genotoxic parameters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The occurrence of pharmaceuticals in aquatic ecosystems and the need to study them have increased over the years since they enter continuously the environment. Besides, these compounds are not intended for applications with environmental purposes, and therefore, little is known about their ecological effects, particularly in non-target organisms, as invertebrate species. Inside these substances, endocrine disrupting compounds (EDCs) have recently come into the limelight, due to environmental concentrations and consequently their detrimental effects on different organisms. 17α-ethinylestradiol (EE2) has been detected in the aquatic environment in various locations around the globe since it is the main synthetic hormone used as a female oral contraceptive and is also applied in veterinary medicine and animal production. The present study was intended to assess the chronic effects of EE2, in the non-target organism as Daphnia magna. Thus, to analyze the individual and subindividual impact, this aquatic organism was chronically exposed (21 days) to 0.00 (control group), 0.10, 1.00, 10.0, and 100 μg/L of EE2. Results here obtained demonstrated that D. magna exposed to the EE2 concentrations had significant effects in individual (life-history) and sub-individual (biochemical levels) parameters. Alterations as anticipation in the age at first reproduction, a decrease of the growth rate, oxidative stress, and lipid peroxidation were detected, as well as genotoxic damage. Therefore, it was possible to infer that EE2 can disrupt several metabolic pathways and physiological functions of D. magna, since EE2 demonstrated ecotoxicity, at environmentally relevant concentrations. This work reinforces the importance of examining the effects of more relevant exposures (more prolonged and with ecologically pertinent concentrations) of potential endocrine disruptors like EE2, to the freshwater organisms and ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data produced in this study are presented in the manuscript.

References

  • Aebi H (1984) Catalase in vitro. Method. Enzymol. 6:114–121

    Google Scholar 

  • Aris AZ, Shamsuddin AS, Pravena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 69:104–119

    Article  CAS  Google Scholar 

  • ASTM, 1980. Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians, reports E 729–80. Philadelphia, USA

  • Aydin E, Talinli I (2013) Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece watershed, Turkey. Chemosphere. 90(6):2004–2012

    Article  CAS  Google Scholar 

  • Azqueta A, Collins AR (2011) The comet assay: a sensitive and quantitative method for analysis of DNA damage. In: Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188-189(1):403–406

    Article  CAS  Google Scholar 

  • Balch GC, Mackenzie CA, Metcalfe CD (2004) Alterations to gonadal development and reproductive success in japanese medaka (Oryzias latipes) exposed to 17α-ethinylestradiol. Environ Toxicol Chem Int J 23(3):782–791

    Article  CAS  Google Scholar 

  • Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34(24):5059–5066

    Article  CAS  Google Scholar 

  • Belfroid AC, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci Total Environ 225(1–2):101–108

    Article  CAS  Google Scholar 

  • Bögi C, Schwaiger J, Ferling H, Mallow U, Steineck C, Sinowatz F, Kalbfus W, Negele RD, Lutz I, Kloas W (2003) Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ Res 93(2):195–201

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Brossa L, Marcé RM, Borrull F, Pocurull E (2005) Occurrence of twenty-six endocrine-disrupting compounds in environmental water samples from Catalonia, Spain. Environ Toxicol Chem 24:261–267

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cardoso O, Porcher J-M, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere. 115:20–30

    Article  CAS  Google Scholar 

  • Cargouet M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y (2004) Assessment of river contamination by estrogenic compounds in Paris area (France). Sci Total Environ 324(1–3):55–66

    Article  CAS  Google Scholar 

  • Chen CY, Wen TY, Wang GS, Cheng HW, Lin YH, Lien GW (2007) Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Sci Total Environ 378(3):352–365

    Article  CAS  Google Scholar 

  • Chen Y, Li M, Yuan L, Xie Y, Li B, Xu W, Meng F, Wang R (2017) Growth, blood health, antioxidant status and immune response in juvenile yellow catfish Pelteobagrus fulvidraco exposed to α-ethinylestradiol (EE2). Fish Shellfish Immunol 69:1–5

    Article  CAS  Google Scholar 

  • Clubbs RL, Brooks BW (2007) Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist: a multigenerational study. Ecotoxicol Environ Saf 67:385–398

    Article  CAS  Google Scholar 

  • Colli-Dula RC, Martyniuk CJ, Kroll KJ, Prucha MS, Kozuch M, Barber DS, Denslow ND (2014) Dietary exposure of 17-alpha ethinylestradiol modulates physiological endpoints and gene signaling pathways in female largemouth bass (Micropterus salmoides). Aquat Toxicol 156:148–160

    Article  CAS  Google Scholar 

  • Contractor RG, Foran CM, Li S, Willett KL (2004) Evidence of gender-and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in Japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J Toxicol Environ Health A 67(1):1–22

    Article  CAS  Google Scholar 

  • Cunha DLD, Silva SMCD, Bila DM, Oliveira JLDM, Sarcinelli PDN, Larentis AL (2016) Regulamentação do estrogénio sintético 17α-etinilestradiol em matrizes aquáticas na Europa, Estados Unidos e Brasil. Cadernos de Saúde Pública 32

  • Daughton C, Ternes T (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • Dietrich S, Ploessl F, Bracher F, Laforsch C (2010) Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna – a multigenerational study. Chemosphere 79(1):60–66

    Article  CAS  Google Scholar 

  • Doyle MA, Bosker T, Martyniuk CJ, MacLatchy DL, Munkittrick KR (2013) The effects of 17-α-ethinylestradiol (EE2) on molecular signaling cascades in mummichog (Fundulus heteroclitus). Aquat Toxicol 134:34–46

    Article  CAS  Google Scholar 

  • EPA, United States Environmental Protection Agency (2016) Contaminant candidate list 4-CCL 4 and regulatory determination. Final CCL4 chemical contaminants. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0

  • Erkekoglu P, Rachidi W, Yuzugullu OG, Giray B, Favier A, Ozturk M, Hincal F (2010) Evaluation of cytotoxicity and oxidative DNA damaging effects of di (2-ethylhexyl)-phthalate (DEHP) and mono (2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicol Appl Pharm 248(1):52–62

    Article  CAS  Google Scholar 

  • Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS (2010) Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal Chem 82(22):9433–9440

    Article  CAS  Google Scholar 

  • Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28(12):2522–2527

    Article  CAS  Google Scholar 

  • Forlano PM, Bass AH (2005) Seasonal plasticity of brain aromatase mRNA expression in glia: divergence across sex and vocal phenotypes. J Neurobiol 65(1):37–49

    Article  CAS  Google Scholar 

  • Furuichi T, Kannan K, Giesy JP, Masunaga S (2004) Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay. Water Res 38(20):4491–4501

    Article  CAS  Google Scholar 

  • Goto T, Hiromi J (2003) Toxicity of 17 alpha-ethynylestradiol and norethindrone, constituents of an oral contraceptive pill to the swimming and reproduction of cladoceran Daphnia magna, with special reference to their synergetic effect. Mar Pollut Bull 47:139–142

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases – the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  • Hallgren P, Sorita Z, Berglund O, Persson A (2012) Effects of 17α-ethinylestradiol on individual life-history parameters and estimated population growth rates of the freshwater gastropods Radix balthica and Bithynia tentaculata. Ecotoxicology. 21(3):803–810

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nielson SN, Lanzky PF, Ingerslev F, Holten Lützhøft J, Jorgensen SE (1998) Chemosphere. 35:357–393

    Article  Google Scholar 

  • Halling-Sørensen C, Lützhøft R, Andersen F, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58

    Article  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  • Heger S, Bluhm K, Du M, Lehmann G, Anders N, Dechambre D, Bardow A, Schaffer A, Hollert H (2018) Aquatic toxicity of biofuel candidates on Daphnia magna. Ecotoxicol Environ Saf 164:125–130

    Article  CAS  Google Scholar 

  • Hidalgo IJ (2001) Assessing the absorption of new pharmaceuticals. Curr Top Med Chem 1(5):385–401

    Article  CAS  Google Scholar 

  • Hohenblum P, Gans O, Moche W, Scharf S, Lorbeer G (2004) Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Sci Total Environ 333(1–3):185–193

    Article  CAS  Google Scholar 

  • Hultman MT, Song Y, Tollefsen KE (2015) 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 169:90–104

    Article  CAS  Google Scholar 

  • Jafari A, Abasabad R, Salehzadeh A (2009) Endocrine disrupting contaminants in water resources and sewage in Hamadan City of Iran. J Environ Health Sci 6(2):89–96

    CAS  Google Scholar 

  • Jaser W, Severin GF, Jutting U, Juttner I, Schramm KW, Kettrup A (2003) Effects of 17alpha-ethinylestradiol on the reproduction of the cladoceran species Ceriodaphnia reticulata and Sida crystalline. Environ Int 28:633–638

    Article  CAS  Google Scholar 

  • Jobling S, Beresford N, Nolan M, Rodgers-Gray T, Brighty GC, Sumpter JP, Tyler CR (2002) Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol Reprod 66(2):272–281

    Article  CAS  Google Scholar 

  • Johnson AC, Belfroid A, Di Corcia A (2000) Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 256(2–3):163–173

    Article  CAS  Google Scholar 

  • Jürgens MD, Holthaus KI, Johnson AC, Smith JJ, Hetheridge M, Williams RJ (2002) The potential for estradiol and ethinylestradiol degradation in English rivers. Environ Toxicol Chem Int J 21(3):480–488

    Article  Google Scholar 

  • Kaczala F, Blum ES (2016) The occurrence of veterinary pharmaceuticals in the environment: a review. Curr Anal Chem 12(3):169–182

    Article  CAS  Google Scholar 

  • Kahl MD, Makynen EA, Kosian PA, Ankley GT (1997) Toxicity of 4-nonylphenol in a life-cycle test with the midge Chironomus tentans. Ecotoxicol Environ Saf 38(2):155–160

    Article  CAS  Google Scholar 

  • Kashian DR (2004) Toxaphene detoxification and acclimation in Daphnia magna: do cytochrome P-450 enzymes play a role? Comp Biochem Physiol Part C 137:53–63

    Google Scholar 

  • Kashian DR, Dodson SI (2004) Effects of vertebrate hormones on development and sex determination in Daphnia magna. Environ Toxicol Chem Int J 23(5):1282–1288

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Kovacevic V, Simpson AJ, Simpson MJ (2018) Evaluation of Daphnia magna metabolic responses to organic contaminant exposure with and without dissolved organic matter using 1H nuclear magnetic resonance (NMR)-based metabolomics. Ecotoxicol Environ Saf 164:189–200

    Article  CAS  Google Scholar 

  • Kronimus A, Schwarzbauer D, Dsikowitzky L, Heim S, Littke R (2004) Anthropogenic organic contaminants in sediments of the Lippe River, Germany. Water Res 38:3473–3484

    Article  CAS  Google Scholar 

  • Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC−(NCI)− MS in the picogram per liter range. Environ Sci Technol 35(15):3201–3206

    Article  CAS  Google Scholar 

  • Lagadic L, Coutellec MA, Caquet T (2007) Endocrine disruption in aquatic pulmonate molluscs: few evidences, many challenges. Ecotoxicology. 16(1):45–59

    Article  CAS  Google Scholar 

  • Laganà A, Bacaloni A, De Leva I, Faberi A, Fago G, Marino A (2004) Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal Chim Acta 501(1):79–88

    Article  CAS  Google Scholar 

  • Länge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem Int J 20(6):1216–1227

    Article  Google Scholar 

  • Leonard JA, Cope WG, Barnhart MC, Bringolf RB (2014) Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat Toxicol 150:103–116

    Article  CAS  Google Scholar 

  • Li MH (2020) Enzymatic biomarker responses of freshwater planarians exposed to endocrine disrupting compounds. Fresenius Environ Bull 3354

  • Lin AY, Yu TH, Lateef SK (2009) Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J Hazard Mater 167:1163–1169

    Article  CAS  Google Scholar 

  • Lintelmann, J., Katayama, A., Kurihara, N., Shore, L., Wenzel, A., 2003. Endocrine disruptors in the environment (IUPAC Technical Report). Pure Appl Chem 75(5), 631–681

  • Luna TO, Plautz SC, Salice CJ (2015) Chronic effects of 17a-ethinylestradiol, fluoxetine, and the mixture on individual and population-level endpoints in Daphnia magna. Arch Environ Contam Toxicol 68:603–611

    Article  CAS  Google Scholar 

  • MacLatchy DL, Courtenay SC, Rice CD, Van Der Kraak GJ (2003) Development of a short-term reproductive endocrine bioassay using steroid hormone and vitellogenin endpoints in the estuarine mummichog (Fundulus heteroclitus). Environ. Toxicol. Chem. Int. J. 22(5):996–1008

    Article  CAS  Google Scholar 

  • Maes H (2011) Fate of ethinylestradiol in the aquatic environment and the associated effects on organisms of different trophic levels. Doctoral thesis. Publikationsserver der RWTH Aachen University. Germany

  • Maranho LA, Baena-Nogueras RM, Lara-Martín PA, DelValls TA, Martín-Díaz ML (2014) Bioavailability, oxidative stress, neurotoxicity and genotoxicity of pharmaceuticals bound to marine sediments. The use of the polychaete Hediste diversicolor as bioindicator species. Environ Res 134:353–365

    Article  CAS  Google Scholar 

  • Marinho MC, Lage OM, Sousa CD, Catita J, Antunes SC (2019) Assessment of Rhodopirellula rubra as a supplementary and nutritional food source to the microcrustacean Daphnia magna. Anton Van Leeuw 112:1231–1243

    Article  CAS  Google Scholar 

  • Martínez NA, Schneider RJ, Messina GA, Raba J (2010) Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples. Biosens Bioelectron 25(6):1376–1381

    Article  CAS  Google Scholar 

  • Martyniuk CJ, Xiong H, Crump K, Chiu S, Sardana R, Nadler A, Gerrie RE, Xia X, Trudeau VL (2006) Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17α-ethinylestradiol. Physiol Genomics 27(3):328–336

    Article  CAS  Google Scholar 

  • Micael J, Reis-Henriques MA, Carvalho AP, Santos MM (2007) Genotoxic effects of binary mixtures of xenoandrogens (tributyltin, triphenyltin) and a xenoestrogen (ethinylestradiol) in a partial life-cycle test with Zebrafish (Danio rerio). Environ Int 33(8):1035–1039

    Article  CAS  Google Scholar 

  • Mo N, Zhang M, Wang R, Xia S, Meng F, Qian Y, Li M (2019) Effects of α-ethinyl estradiol (EE2) and diethylhexyl phthalate (DEHP) on growth performance, antioxidant status and immune response of juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Phys C 226:108615

    CAS  Google Scholar 

  • Montagner CC, Jardim WF (2011) Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, São Paulo state (Brazil). J Braz Chem Soc 22:1452–1462

    Article  CAS  Google Scholar 

  • Mortensen AS, Arukwe A (2007) Effects of 17α-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar). Aquat Toxicol 85(2):113–123

    Article  CAS  Google Scholar 

  • Nasuhoglu D, Berk D, Yargeau V (2012) Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation. Chem Eng J 185:52–60

    Article  CAS  Google Scholar 

  • Nunes B, Leal C, Rodrigues S, Antunes SC (2017) Assessment of ecotoxicological effects of ciprofloxacin in Daphnia magna: life-history traits, biochemical and genotoxic effects. Water Sci Technol (3):835–844

  • OECD (Organization for Economic Cooperation and Development) (2012). Daphnia magna reproduction test. Guidelines for the testing of chemicals. Test Guideline n° 211., Paris, France

  • Oetken M, Bachmann J, Schulte-Oehlmann U, Oehlmann J (2004) Evidence for endocrine disruption in invertebrates. Int Rev Cytol 236(14):1–44

    CAS  Google Scholar 

  • Pailler J-Y, Pfister KL, Hoffmann L, Guignard C (2009) Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Sci Total Environ 407:4736–4743

    Article  CAS  Google Scholar 

  • Parrott JL, Blunt BR (2005) Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ Toxicol Int J 20(2):131–141

    Article  CAS  Google Scholar 

  • Pawlowski S, Ternes TA, Bonerz M, Rastall AC, Erdinger L, Braunbeck T (2004a) Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. Toxicol in Vitro 18(1):129–138

    Article  CAS  Google Scholar 

  • Pawlowski S, Van Aerle R, Tyler CR, Braunbeck T (2004b) Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicol Environ Saf 57(3):330–345

    Article  CAS  Google Scholar 

  • Pojana G, Gomiero A, Jonkers N, Marcomini A (2007) Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int 33(7):929–936

    Article  CAS  Google Scholar 

  • Rehman MSU, Rashid N, Ashfaq M, Saif A, Ahmad N, Han J-I (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere. 138:1045–1055

    Article  CAS  Google Scholar 

  • Reis P, Lourenço J, Carvalho FP, Oliveira J, Malta M, Mendo S, Pereira R (2018) RIBE at an inter organismic level: a study on genotoxic effects in Daphnia magna exposed to waterborne uranium and a uranium mine effluent. Aquat Toxicol 198:206–214

    Article  CAS  Google Scholar 

  • Rocha MJ, Cruzeiro C, Reis M, Pardal MA, Rocha E (2016) Pollution by oestrogenic endocrine disruptors and beta-sitosterol in a south-western European river (Mira, Portugal). Environ Monit Assess 188:240

    Article  CAS  Google Scholar 

  • Rodrigues S, Antunes SC, Correia AT, Nunes B (2016) Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. Sci Total Environ 545:591–600

    Article  CAS  Google Scholar 

  • Santos M, Araújo N, Fachini A, Pena A, Delerue-Matos C, Montenegro M (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Schäfers C, Teigeler M, Wenzel A, Maack G, Fenske M, Segner H (2007) Concentration-and time-dependent effects of the synthetic estrogen, 17α-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio. J Toxicol Environ Health A 70(9):768–779

    Article  CAS  Google Scholar 

  • Scholz S, Gutzeit HO (2000) 17-α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquat Toxicol 50(4):363–373

    Article  CAS  Google Scholar 

  • Schulman L, Sargent E, Naumann B, Faria E, Dolan D, Wargo J (2002) A human health risk assessment of pharmaceuticals in the aquatic environment. Hum Ecol Risk Assess 8:657–680

    Article  CAS  Google Scholar 

  • Schultz IR, Skillman A, Nicolas JM, Cyr DG, Nagler JJ (2003) Short-term exposure to 17α-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem Int J 22(6):1272–1280

    Article  CAS  Google Scholar 

  • Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schäfers C, Vandenbergh GF, Watts M, Wenzel A (2003) Identification of endocrine disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54:302–314

    Article  CAS  Google Scholar 

  • Shen C, Wei J, Wang T, Wang Y (2019) Acute toxicity and responses of antioxidant systems to dibutyl phthalate in neonate and adult Daphnia magna. PeerJ. 7:e6584

    Article  CAS  Google Scholar 

  • Snyder SA, Keith TL, Verbrugge DA, Snyder EM, Gross TS, Kannan K, Giesy JP (1999) Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol 33(16):2814–2820

    Article  CAS  Google Scholar 

  • Sodré FF, Locatelli MAF, Jardim WF (2010) Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut 206(1–4):57–67

    Article  CAS  Google Scholar 

  • Stabell OB, Ogbebo F, Primicerio R (2003) Inducible defences in Daphnia depend on latent alarm signals from conspecific prey activated in predators. Chem Senses 28:141–153

    Article  CAS  Google Scholar 

  • Stachel B, Ehrhorn U, Heemken OP, Lepom P, Reincke H, Sawal G, Theobald N (2003) Xenoestrogens in the River Elbe and its tributaries. Environ Pollut 124(3):497–507

    Article  CAS  Google Scholar 

  • Tanaka Y (2003) Ecological risk assessment of pollutant chemicals: extinction risk based on population-level effects. Chemosphere 53(4):421–425

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Ternes TA, Kreckel P, Mueller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants - II. Aerobic batch experiments with activated sludge. Sci Total Environ 225:91–99

    Article  CAS  Google Scholar 

  • Tilton F, Benson WH, Schlenk D (2001) Elevation of serum 17-β-estradiol in channel catfish following injection of 17-β-estradiol, ethynyl estradiol, estrone, estriol and estradiol-17-β-glucuronide. Environ Toxicol Pharm 9(4):169–172

    Article  CAS  Google Scholar 

  • Trudeau VL, Turque N, Le Mével S, Alliot C, Gallant N, Coen L, Pakdel F, Demeneix B (2005) Assessment of estrogenic endocrine-disrupting chemical actions in the brain using in vivo somatic gene transfer. Environ Health Perspect 113(3):329–334

    Article  CAS  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455

    Article  CAS  Google Scholar 

  • Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GB, Gerritsen A, Boer J et al (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere. 59(4):511–524

    Article  CAS  Google Scholar 

  • Wang L, Ying GG, Zhao JL, Liu S, Yang B, Zhou LJ, Tao R, Su HC (2011) Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ Pollut 159(1):148–156

    Article  CAS  Google Scholar 

  • Watts MM, Pascoe D, Carroll K (2001) Chronic exposure to 17α-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera: Chironomidae). Aquat Toxicol 55(1–2):113–124

    Article  CAS  Google Scholar 

  • Williams RJ, Johnson AC, Smith JJ, Kanda R (2003) Steroid estrogens profiles along river stretches arising from sewage treatment works discharges. Environ Sci Technol 37(9):1744–1750

    Article  CAS  Google Scholar 

  • Yang J, Li H, Ran Y, Chan K (2014) Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish bile of the Pearl River Delta, South China. Chemosphere. 107:439–446

    Article  CAS  Google Scholar 

  • Zhang X, Gao Y, Li Q, Li G, Guo Q, Yan C (2011) Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang Lagoon in Xiamen, China. Arch Environ Contam Toxicol 61(1):93–100

    Article  CAS  Google Scholar 

  • Zhou Y, Zha J, Wang Z (2012) Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China. Environ Monit Assess 184(11):6799–6813

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang K, Deng Y (2006) Occurrence and photochemical degradation of 17α-ethinylestradiol in Acushnet River estuary. Chemosphere. 63:1583–1590

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang K, Zhou S (2013) Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study. Sci Process Impacts 15:1529–1535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sara Antunes acknowledges the Foundation for Science and Technology (FCT) for research contracts under the program “Scientific Employment Stimulus 2017” (CEECIND/01756/2017) and for the project “REDEFInE—a multi-scale and multi-tiered toolbox for assessing ecosystem quality of freshwater REservoirs: briDging the gaps of the watEr Framework dIrEctive approach” (reference POCI-01-0145-FEDER-029368). Sara Rodrigues is hired by the “REDEFInE” project.

Funding

This work was supported by National Funds (through the FCT—Foundation for Science and Technology) and by the European Regional Development Fund (through COMPETE2020 and PT2020) through the research project ReDEFine (POCI-01-0145-FEDER-029368) and the strategic program UIDB/04423/2020 and UIDP/04423/2020. Sara Antunes is hired through the Regulamento do Emprego Científico e Tecnológico—RJEC from the Portuguese Foundation for Science and Technology (FCT) program (CEECIND/01756/2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors materially participated in the research and/or article preparation: Sara Rodrigues and Ana Marta Silva were responsible for maintenance of test organisms, control during exposure, sacrifice and processing of biological samples, and for the writing of the research article submitted in its present form; Sara Antunes supervised exposure and sacrifice procedures, respectively, and ensured quality control concerning the preliminary processing of biological samples. Sara Rodrigues and Sara Antunes assisted during the elaboration of article/statistical analyses. Sara Antunes was the main supervisor of the present work and was also responsible for conducting enzymatic assays and data analysis. Furthermore, in close cooperation with Sara Rodrigues was responsible for the statistics.

Corresponding author

Correspondence to Sara Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent to participate

This work is approved by all authors and by the responsible authorities where the work was carried out.

Consent to publish

All of the authors have read and approved the final version to submit the paper and guarantee that it has not been published previously.

Additional information

Responsible Editor: Ludek Blaha

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, S., Silva, A.M. & Antunes, S.C. Assessment of 17α-ethinylestradiol effects in Daphnia magna: life-history traits, biochemical and genotoxic parameters. Environ Sci Pollut Res 28, 23160–23173 (2021). https://doi.org/10.1007/s11356-020-12323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12323-5

Keywords

Navigation