Skip to main content
Log in

Design method of a modified layered aerobic waste landfill divided by coarse material

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To overcome the weaknesses of traditional landfills, a modified aerobic landfill concept with intermediate covers of coarse material between waste layers functioning as facilities of drainage and aeration has been proposed recently. In this study, a one-dimensional coupled model, including aerobic biodegradation, oxygen diffusion, and advection, is proposed to describe oxygen distribution in this new type of landfill. Homotopy analysis method and perturbation method are applied to solve this model at passive aeration and active aeration, respectively. The model has six input variables, that is, oxygen diffusion coefficient, gas permeability, maximum oxygen consumption rate, layer thickness of waste, and injection pressure and extraction pressure. A combination of their typical values gives rise to over 700,000 scenarios which can be calculated by the proposed solution. The coupled effect of the above variables on oxygen migration is quantitatively investigated, followed by an estimation formula of the minimum oxygen concentration in waste layer. The maximum waste layer thickness is defined as a function of other variables for a given aeration target of oxygen volume concentration larger than 5%. A generalized design method of waste layer thickness, injection pressure, and extraction pressure is then developed for the newly proposed modified layered aerobic landfill, which can promote its popularization and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a 1 :

the fitting parameter for cf1 in Eq.(30a) (–)

A 1 :

the passive aeration parameter (–)

A 1max :

the passive aeration parameter corresponding to ccr (–)

B :

the fitting parameter in Eq. (22) defined as the moderate injection pressure parameter [ML−1T−2]

c :

the concentration of oxygen [ML−3]

c 0, c d/2, c d :

the oxygen concentration at z = 0, z = d/2 and z = d, respectively [ML−3]

c cr :

the oxygen concentration threshold for aerobic biodegradation [ML−3]

cf 1, cf 2, cf 3 :

the fitting parameter in Eq. (29) and Eq. (33) (–)

d :

the waste layer thickness [L]

d max :

the maximum waste layer thickness of passive aeration [L]

D, D O :

the diffusion coefficient of oxygen in the waste and air, respectively [L2 T−1]

k, k S :

the half-saturation constant of oxygen and substrate, respectively [ML−3]

k m :

the maximum aerobic biodegradation rate constant [T−1]

k T, k w :

the temperature and water content factors, respectively (–)

K z :

the vertical intrinsic gas permeability of the waste [L2]

KA :

the advection-biodegradation ratio (–)

KD :

the diffusion-advection ratio (–)

n :

the porosity of waste (–)

p atm :

the atmospheric pressure [ML−1 T−2]v

p i, p e :

the injection and the extraction pressure, respectively [ML−1 T−2]

P :

the fitting parameter in Eq. (22) defined as the minimum injection pressure [ML−1 T−2]

P 1 :

the fitting parameter in Eq. (25) defined as the zero-extraction minimum injection pressure [ML−1T−2]

q :

the Darcy flow velocity of oxygen [L T−1]

R :

the gas constant [L2 T−2 K−1]

R A :

the growth rate of aerobic biomass [ML−3 T−1]

R O :

the oxygen consumption rate [ML−3 T−1]

R S :

the waste degradation rate [ML−3 T−1]

S :

the aerobic biodegradable substrate concentration [ML−3]

T, T' :

the temperature of the waste and air, respectively [K]

T max, T min, T opt :

the maximum, the minimum and the optimum temperature for aerobic bacteria growth, respectively [K]

X A :

the aerobic biomass concentration [ML−3]

Y :

the yield coefficient, (kgB/kgS) (–)

z :

the vertical coordinate [L]

α :

the maximum oxygen consumption rate [ML−3 T−1]

θ g :

the volumetric gas content of waste (–)

φ O :

the volume fraction of oxygen in air (–)

μ :

the gas dynamic viscosity [ML−1 T−1]

References

  • Baptista M, Antunes F, Gonçalves MS, Morvan B, Silveira A (2010) Composting kinetics in full-scale mechanical–biological treatment plants. Waste Manag 30:1908–1921

    Article  CAS  Google Scholar 

  • Beaven RP, Powrie W (1995) Determination of the hydrogeological and geotechnical properties of refuse using a large scale compression cel. Paper presented at the Fifth International Landfill Symposium, Cagliari, Italy

  • Beaven R, White J, Braithwaite P (2008) Application of the University of Southampton landfill degradation and transport model (LDAT) to an aerobic treatment field experiment. Proceedings of Global Waste Management Symposium, Colorado, USA

  • Chen R, Ge Y, Chen Z, Liu J, Zhao Y, Li Z (2019) Analytical solution for one-dimensional contaminant diffusion through unsaturated soils beneath geomembrane. J Hydrol 568:260–274

    Article  Google Scholar 

  • Cole DJ, Levine LE (1973) Perturbation methods in applied mathematics. IEEE Trans Syst Man Cybernet 3(6):647–648

    Article  Google Scholar 

  • COMSOL (2018) COMSOL Multiphysics 5.2

  • Erses AS, Onay TT, Yenigun O (2008) Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour Technol 99:5418–5426

    Article  CAS  Google Scholar 

  • Feng SJ, Zheng QT (2015) A two-dimensional gas flow model for layered municipal solid waste landfills. Comput Geotech 63:135–145

    Article  Google Scholar 

  • Feng SJ, Zheng QT, Xie HJ (2017) A gas flow model for layered landfills with vertical extraction wells. Waste Manag 66:103–113

    Article  Google Scholar 

  • Feng S, Liu HW, Chiu ACF, Ng CWW (2019) A steady-state analytical profile method for determining methane oxidation in landfill cover. Sci Total Environ 646:1528–1535

    Article  CAS  Google Scholar 

  • Fytanidis DK, Voudrias EA (2014) Numerical simulation of landfill aeration using computational fluid dynamics. Waste Manag 34:804–816

    Article  CAS  Google Scholar 

  • Komilis D, Evangelou A, Giannakis G, Lymperis C (2012) Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Manag 32:372–381

    Article  CAS  Google Scholar 

  • Liao SJ, Sherif SA (2004) Beyond perturbation: introduction to the homotopy analysis method. Appl Mech Rev 57(5):B25–B26

    Article  Google Scholar 

  • Liu L, Ma J, Xue Q, Wan Y, Yu X (2018) Modeling the oxygen transport process under preferential flow effect in landfill. Environ Sci Pollut Res 25:18559–18569

    Article  CAS  Google Scholar 

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 5:1200–1207

    Article  Google Scholar 

  • Nayagum D, White J, Rees-White T, Holmes D, Zardava K (2009) Numerical modeling of the flow dynamics of air and leachate though waste material under vertical drainage and forced-air flow. In: Third International Conference of Hydro-Physico-Mechanics of Landfills, Braunschweig, Germany, 10-13 March

  • Omar H, Rohani S (2017) The mathematical model of the conversion of a landfill operation from anaerobic to aerobic. Appl Math Model 50:53–67

    Article  Google Scholar 

  • Oppenheimer JR, Martin AG, Walker LP (1997) Measurements of air-filled porosity in unsaturated organic matrices using a pycnometer. Bioresour Technol 59(2-3):241–247

  • Rees-White T, Beaven RP, Braithwaite P, Purcell B (2008) Monitoring air flow and distribution at a forced-air aerobic waste treatment plant. In: Proceedings of Global Waste Management Symposium, Colorado, USA, 8-10 September

  • Ritzkowski M, Stegmann R (2012) Landfill aeration worldwide: concepts, indications and findings. Waste Manag 32:1411–1419

    Article  CAS  Google Scholar 

  • Ritzkowski M, Walker B, Kuchta K, Raga R, Stegmann R (2016) Aeration of the teuftal landfill: field scale concept and lab scale simulation. Waste Manag 55:99–107

    Article  CAS  Google Scholar 

  • Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463

    Article  CAS  Google Scholar 

  • Rowe RK, Nadarajah P (1997) An analytical method for predicting the velocity field beneath landfills. Can Geotech J 34:264–282

    Article  Google Scholar 

  • Sang-Yul K, Yasumasa T, Toshihiko M (2007) Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill. Waste Manag Res 25:524–537

    Article  Google Scholar 

  • Shirejini SZ, Fattahi M (2016) Mathematical modeling and analytical solution of two-phase flow transport in an immobilized-cell photo bioreactor using the homotopy perturbation method (HPM). Int J Hydrog Energy 41:18405–18417

    Article  CAS  Google Scholar 

  • Stegmann R (2019) Development of waste management in the last 30 years. Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. pp 172-185

  • Stoltz G, Gourc JP, Oxarango L (2010) Liquid and gas permeabilities of unsaturated municipal solid waste under compression. J Contam Hydrol 118:27–42

    Article  CAS  Google Scholar 

  • Suk H (2013) Developing semianalytical solutions for multispecies transport coupled with a sequential first-order reaction network under variable flow velocities and dispersion coefficients. Water Resour Res 49:3044–3048

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Eliassen R, Theisen H (1993) Integrated solid waste management--engineering principles & management issues

  • Townsend TG, Wise WR, Jain P (2005) One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. J Environ Eng 131:1716–1723

    Article  CAS  Google Scholar 

  • Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Waste and landfill fundamentals. In: Sustainable practices for landfill design and operation. pp 13-34

  • VanderGheynst JS, Gossett JM, Walker LP (1997) High-solids aerobic decomposition: pilot scale reactor development and experimentation. Process Biochem 32:361–375

    Article  CAS  Google Scholar 

  • Wise W, Townsend T (2011) One-dimensional gas flow models for municipal solid waste landfills: cylindrical and spherical symmetries. J Environ Eng 137:514–516

    Article  CAS  Google Scholar 

  • Xie H, Wang Q, Wu J, Chen Y (2019) Analytical model for methane migration through fractured unsaturated landfill cover soil. Eng Geol 255:69–79

    Article  Google Scholar 

  • Yao Y, Su Y, Wu Y, Liu W, He R (2015) An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation. J Hazard Mater 283:871–879

    Article  CAS  Google Scholar 

  • Zheng QT, Rowe RK, Feng SJ (2018) Design of vertical landfill gas collection wells considering non-homogeneity with depth. Waste Manag 82:26–36

    Article  Google Scholar 

  • Zheng QT, Rowe RK, Feng SJ (2019) Recovery response of vertical gas wells in non-homogeneous landfills. Waste Manag 83:33–45

    Article  Google Scholar 

Download references

Funding

Much of the work described in this paper was supported by the National Natural Science Foundation of China under Grant Nos. 41725012 and 41931289, the Fundamental Research Funds for the Central Universities under Grant No. 0200219152, the Shanghai Science and Technology Innovation Action Plan under Grant No. 18DZ1204402, and the China Postdoctoral Science Foundation under Grant No. 2020M671218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Teng Zheng.

Ethics declarations

Competing financial interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible editor: Marcus Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Derivation of the semi-analytical solution at passive aeration

Equation (15) can be rewritten as follows:

$$ \left\{\begin{array}{l}\overline{c}\frac{d^2\overline{c}}{d{\overline{z}}^2}+\frac{d^2\overline{c}}{d{\overline{z}}^2}-{A}_1\overline{c}=0\\ {}{\left.\overline{c}\right|}_{\overline{z}=0}=\overline{c_0}\kern0.5em {\left.\frac{d\overline{c}}{d\overline{z}}\right|}_{\overline{z}=1}=0\end{array}\right. $$
(35)

Let linear operator L and nonlinear operator N be as follows:

$$ {\displaystyle \begin{array}{l}L\left[\varphi \left(\overline{z};q\right)\right]=\frac{\partial^2\varphi \left(\overline{z};q\right)}{\partial {\overline{z}}^2}\\ {}N\left[\varphi \left(\overline{z};q\right)\right]=\varphi \left(\overline{z};q\right)\frac{\partial^2\varphi \left(\overline{z};q\right)}{\partial {\overline{z}}^2}+\frac{\partial^2\varphi \left(\overline{z};q\right)}{\partial {\overline{z}}^2}-{A}_1\varphi \left(\overline{z};q\right)\end{array}} $$
(36)

where q is embedding parameter.

The homotopy H for q∈[0,1] can be defined as follows:

$$ \left\{\begin{array}{l}H\left[\varphi \left(\overline{z};q\right),q\right]=\left(1-q\right)\cdot \varphi \left(\overline{z};q\right)\cdot L\left[\varphi \left(\overline{z};q\right)-\overline{c_0}\right]+ qN\left[\varphi \left(\overline{z};q\right)\right]=0\\ {}{\left.\varphi \left(\overline{z},q\right)\right|}_{\overline{z}=0}=\overline{c_0},\kern0.5em {\left.\frac{\partial \varphi \left(\overline{z},q\right)}{\partial \overline{z}}\right|}_{\overline{z}=1}=0\end{array}\right. $$
(37)

Obviously, Eq. (38) can be obtained from Eq. (37):

$$ \left\{\begin{array}{l}\varphi \left(\overline{z};0\right)=\overline{c_0}\\ {}\varphi \left(\overline{z};1\right)=\overline{c}\left(\overline{z}\right)\end{array}\right. $$
(38)

Thus, as q increases from 0 to 1, the φ varies from the boundary condition of Eq. (35) to the solution of Eq. (35). Expanding φ with Taylor series at q = 0 yields the following:

$$ \varphi \left(\overline{z};q\right)=\varphi \left(\overline{z};0\right)+\sum \limits_{m=1}^{+\infty}\left({\left.\frac{1}{m!}\frac{\partial \varphi \left(\overline{z};q\right)}{\partial q}\right|}_{q=0}{q}^m\right)=\overline{c_0}+\sum \limits_{m=1}^{+\infty}\overline{c_m}\left(\overline{z}\right){q}^m $$
(39)

where

$$ \overline{c_m}\left(\overline{z}\right)={\left.\frac{1}{m!}\frac{\partial \varphi \left(\overline{z};q\right)}{\partial q}\right|}_{q=0} $$
(40)

Substituting Eq. (38) into Eq. (39) yields the following:

$$ \overline{c}\left(\overline{z}\right)=\varphi \left(\overline{z};1\right)=\overline{c_0}+\sum \limits_{m=1}^{+\infty}\overline{c_m}\left(\overline{z}\right) $$
(41)

Substituting Eq. (39) into Eq. (37) yields the following:

$$ {\displaystyle \begin{array}{l}\left(1-q\right)\cdot \left[{c}_0+\sum \limits_{m=1}^{+\infty}\overline{c_m}{q}^m\right]\cdot \left[\sum \limits_{m=1}^{+\infty}\frac{{\mathrm{d}}^2\overline{c_m}}{\mathrm{d}{\overline{z}}^2}{q}^m\right]=\\ {}-q\left\{\left[{c}_0+\sum \limits_{m=1}^{+\infty}\overline{c_m}{q}^m\right]\cdot \left[\sum \limits_{m=1}^{+\infty}\frac{{\mathrm{d}}^2\overline{c_m}}{\mathrm{d}{\overline{z}}^2}{q}^m\right]+\left[\sum \limits_{m=1}^{+\infty}\frac{{\mathrm{d}}^2\overline{c_m}}{\mathrm{d}{\overline{z}}^2}{q}^m\right]-{A}_1\left[{c}_0+\sum \limits_{m=1}^{+\infty}\overline{c_m}{q}^m\right]\right\}\end{array}} $$
(42)

Rearranging q-terms with the same powers in Eq. (42) yields the following:

$$ {q}^1\kern0.5em {\displaystyle \begin{array}{cc}\overline{c_0}\frac{{\mathrm{d}}^2\overline{c_1}}{\mathrm{d}{\overline{z}}^2}+\overline{c_1}\frac{{\mathrm{d}}^2\overline{c_0}}{\mathrm{d}{\overline{z}}^2}+\frac{{\mathrm{d}}^2\overline{c_0}}{\mathrm{d}{\overline{z}}^2}-{A}_1\overline{c_0}=0& \overline{c_1}(0)=0,{\left.\frac{\mathrm{d}\overline{c_1}}{\mathrm{d}\overline{z}}\right|}_{\overline{z}=1}=0\end{array}} $$
(43a)
$$ {q}^2\kern0.5em {\displaystyle \begin{array}{cc}\overline{c_0}\frac{{\mathrm{d}}^2\overline{c_2}}{\mathrm{d}{\overline{z}}^2}+\overline{c_1}\frac{{\mathrm{d}}^2\overline{c_1}}{\mathrm{d}{\overline{z}}^2}+\overline{c_2}\frac{{\mathrm{d}}^2\overline{c_0}}{\mathrm{d}{\overline{z}}^2}+\frac{{\mathrm{d}}^2\overline{c_1}}{\mathrm{d}{\overline{z}}^2}-{A}_1\overline{c_1}=0& \overline{c_2}(0)=0,{\left.\frac{\mathrm{d}\overline{c_2}}{\mathrm{d}\overline{z}}\right|}_{\overline{z}=1}=0\end{array}} $$
(43b)
$$ {q}^m\kern0.5em {\displaystyle \begin{array}{cc}\sum \limits_{k=0}^m\overline{c_k}\frac{{\mathrm{d}}^2\overline{c_{m-k}}}{\mathrm{d}{\overline{z}}^2}+\frac{{\mathrm{d}}^2\overline{c_{m-1}}}{\mathrm{d}{\overline{z}}^2}-{A}_1\overline{c_{m-1}}=0& \overline{c_m}(0)=0,{\left.\frac{\mathrm{d}\overline{c}}{\mathrm{d}\overline{z}}\right|}_{\overline{z}=1}=0\end{array}} $$
(43c)

Equations (43a)~(43c) are all second-order linear ordinary differential equations and can be converted into the form of y″ = f (x). Thus, the solutions of Eqs. (43a)~(43c) can be obtained by integration:

$$ \overline{c_1}=\frac{A_1}{2}\left({\overline{z}}^2-2\overline{z}\right) $$
(44a)
$$ \overline{c_2}=-\frac{A_1}{2\overline{c_0}}\left({\overline{z}}^2-2\overline{z}\right) $$
(44b)
$$ \overline{c_3}=\frac{A_1}{2{\overline{c_0}}^2}\left[\frac{A_1}{12}{\overline{z}}^4-\frac{A_1}{3}{\overline{z}}^3+{\overline{z}}^2+\left(\frac{2{A}_1}{3}-2\right)\overline{z}\right] $$
(44c)
$$ \overline{c_4}=\left(\frac{A_1}{{\overline{c_0}}^3}-\frac{A_1^2}{{\overline{c_0}}^3}+\frac{2{A}_1^3}{15{\overline{c_0}}^3}\right)\overline{z}-\frac{A_1}{2{\overline{c_0}}^3}{\overline{z}}^2+\frac{A_1^2}{2{\overline{c_0}}^3}{\overline{z}}^3-\frac{2{A}_1^3+3{A}_1^2}{24{\overline{c_0}}^3}{\overline{z}}^4+\frac{A_1^3}{20{\overline{c_0}}^3}{\overline{z}}^5-\frac{A_1^3}{120{{\overline{c}}_0}^3}{\overline{z}}^6 $$
(44d)

Standing on Eq. (41) and Eqs. (44a)~(44d), the solution of Eq. (35) with five terms is obtained as follows:

$$ \overline{c}\left(\overline{z}\right)\approx \overline{c_0}+\overline{c_1}+\overline{c_2}+\overline{c_3}+\overline{c_4} $$
(45)

Compared with numerical solutions, the solution of Eq. (35) with five terms can achieve sufficient accuracy.

Appendix 2. Derivation of the semi-analytical solution at active aeration

Standing on Eq. (17), it is obvious that (1 + c*) ranges from − 1 < (1 + c*) ≤ 0. Thus, the nonlinear term 1 / (1 + c*) in Eq. (19) can be expanded with Taylor series at c* = 0:

$$ \frac{1}{c^{\ast }+1}=1-{c}^{\ast }+{c}^{\ast 2}+\cdots =\sum \limits_{n=0}^{\infty }{\left(-1\right)}^n{c}^{\ast n} $$
(46)

If the dimensionless perturbation parameter ε = 0, Eq. (19) can be simplified as follows:

$$ \left\{\begin{array}{l}\frac{d^2{c}^{\ast }}{d{z}^{\ast 2}}-\frac{d{c}^{\ast }}{d{z}^{\ast }}-{A}_2=0\\ {}{\left.{c}^{\ast}\right|}_{z^{\ast }=0}=0,\kern0.5em {\left.\frac{d{c}^{\ast }}{d{z}^{\ast }}\right|}_{z^{\ast }=\beta }=0\end{array}\right. $$
(47)

The general solution of the homogeneous differential equation corresponding to Eq. (47) can be obtained using the characteristic equation. And the special solution of Eq. (47) can be obtained using the method of variation of constants. The sum of these two solutions is the general solution of Eq. (47):

$$ {c}^{\ast }={c}_0^{\ast }={C}_1+{C}_2{e}^{z^{\ast }}-{A}_2{z}^{\ast } $$
(48)

where C1 and C2 are constants determined according to the boundary conditions.

Actually, ε is not equal to 0. Thus, the expression of c* should be modified. As ε is far less than 1, c* can be expended as follows:

$$ {c}^{\ast}\left({z}^{\ast}\right)={c}_0^{\ast }+\varepsilon {c}_1^{\ast }+{\varepsilon}^2{c}_2^{\ast }+\cdots $$
(49)

Substituting Eqs. (49) and (46) into Eq. (47) yields the following:

$$ {\displaystyle \begin{array}{l}\frac{d^2{c}_0^{\ast }}{d{z}^{\ast 2}}+\varepsilon \frac{d^2{c}_1^{\ast }}{d{z}^{\ast 2}}+{\varepsilon}^2\frac{d^2{c}_2^{\ast }}{d{z}^{\ast 2}}+\cdots -\frac{d{c}_0^{\ast }}{d{z}^{\ast }}-\varepsilon \frac{d{c}_1^{\ast }}{d{z}^{\ast }}-{\varepsilon}^2\frac{d{c}_2^{\ast }}{d{z}^{\ast }}-\cdots \\ {}-{A}_2+\varepsilon \left[1-\left({c}_0^{\ast }+\varepsilon {c}_1^{\ast }+\cdots \right)+{\left({c}_0^{\ast }+\varepsilon {c}_1^{\ast }+\cdots \right)}^2+\cdots \right]=0\end{array}} $$
(50)

And the boundary conditions are converted into the following:

$$ \left\{\begin{array}{l}{c}^{\ast }(0)={c}_0^{\ast }(0)+\varepsilon {c}_1^{\ast }(0)+{\varepsilon}^2{c}_2^{\ast }(0)+\cdots =0\\ {}{\left.\frac{d{c}^{\ast }}{d\overline{z}}\right|}_{\overline{z}=\beta }={\left.\frac{d{c}_0^{\ast }}{d\overline{z}}\right|}_{\overline{z}=\beta }+\varepsilon {\left.\frac{d{c}_1^{\ast }}{d\overline{z}}\right|}_{\overline{z}=\beta }+{\varepsilon}^2{\left.\frac{d{c}_2^{\ast }}{d\overline{z}}\right|}_{\overline{z}=\beta }+\cdots =0\end{array}\right. $$
(51)

Rearranging ε-terms with the same powers in Eq. (50) yields the following:

$$ {\varepsilon}^0\kern0.5em {\displaystyle \begin{array}{cc}\frac{d^2{c}_0^{\ast }}{d{z}^{\ast 2}}-\frac{d{c}_0^{\ast }}{d{z}^{\ast }}-{A}_2=0& {c}_0^{\ast }=0,{\left.\frac{d{c}_0^{\ast }}{d{z}^{\ast }}\right|}_{z^{\ast }=\beta }=0\end{array}} $$
(52a)
$$ {\varepsilon}^1\kern0.5em {\displaystyle \begin{array}{cc}\frac{d^2{c}_1^{\ast }}{d{z}^{\ast 2}}-\frac{d{c}_1^{\ast }}{d{z}^{\ast }}+1-{c}_0^{\ast }+{c}_0^{\ast 2}=0& {c}_1^{\ast }=0,{\left.\frac{d{c}_1^{\ast }}{d{z}^{\ast }}\right|}_{z^{\ast }=\beta }=0\end{array}} $$
(52b)
$$ {\varepsilon}^2\kern0.5em {\displaystyle \begin{array}{cc}\frac{d^2{c}_2^{\ast }}{d{z}^{\ast 2}}-\frac{d{c}_2^{\ast }}{d{z}^{\ast }}+1-{c}_1^{\ast }+2{c}_0^{\ast }{c}_1^{\ast }=0& {c}_1^{\ast }=0,{\left.\frac{d{c}_1^{\ast }}{d{z}^{\ast }}\right|}_{z^{\ast }=\beta }=0\end{array}} $$
(52c)

Substituting the boundary conditions of Eq. (52a) into Eq. (48) yields the general solution of Eq. (52a):

$$ {c}_0^{\ast }=-{A}_2\left({e}^{-\beta }-{e}^{z^{\ast }-\beta }+{z}^{\ast}\right) $$
(53)

The general solution of the homogeneous differential equation corresponding to Eq. (52b) is the following:

$$ {c}_{11}^{\ast }={B}_1+{B}_2{e}^{z^{\ast }} $$
(54)

where B1 and B2 are constants determined according to the boundary conditions.

The second-order nonhomogeneous linear ordinary differential equation (Eq. (52b)) can be solved using the method of variation of constants. The special solution of Eq. (52b) can be assumed as follows:

$$ {c}_{12}^{\ast }={C}_1\left({z}^{\ast}\right)+{C}_2\left({z}^{\ast}\right){e}^{z^{\ast }} $$
(55)

where C1(z*) and C2(z*) satisfy the following equations:

$$ \left(\begin{array}{cc}1& {e}^{z^{\ast }}\\ {}0& {e}^{z^{\ast }}\end{array}\right)\left(\begin{array}{c}{C_1}^{\prime}\left({z}^{\ast}\right)\\ {}{C_2}^{\prime}\left({z}^{\ast}\right)\end{array}\right)=\left(\begin{array}{c}0\\ {}-{c}_0^{\ast 2}+{c}_0^{\ast }-1\end{array}\right) $$
(56)

The expression of C1(z*) and C2(z*) are obtained from solving Eq. (56). Thus, the general solution of Eq. (52b) can be written as follows:

$$ {c}_1^{\ast }={c}_{11}^{\ast }+{c}_{12}^{\ast }={B}_1+{B}_2{e}^{z^{\ast }}+{C}_1\left({z}^{\ast}\right)+{C}_2\left({z}^{\ast}\right){e}^{z^{\ast }} $$
(57)

Substituting the boundary conditions of Eq. (52b) into Eq. (57) yields the general solution of Eq. (52b):

$$ {c}_1^{\ast }={\displaystyle \begin{array}{c}\left[1+\left(1+{e}^{-\beta}\right){A}_2+\left(2+2{e}^{-\beta }+{e}^{-2\beta}\right){z}^{\ast}\right]+\left[\frac{A}{2}+\left({e}^{-\beta }+1\right){A}_2^2\right]{z}^{\ast 2}+\frac{A_2^2}{3}{z}^{\ast 3}\\ {}-{e}^{z^{\ast }-\beta}\left[{A}_2\left(2+2\beta +{e}^{-\beta}\right)+{A}_2^2\left(-1+2\beta +2{\beta}^2+4{e}^{-\beta }+4{\beta e}^{-\beta }+{e}^{-2\beta}\right)+1\right]\\ {}\begin{array}{c}-\frac{A_2^2}{2}{e}^{2{z}^{\ast }-2\beta }+{z}^{\ast }{e}^{z^{\ast }-\beta}\left({A}_2-2{A}_2^2+2{A}_2^2{e}^{-\beta}\right)+{A}_2^2{z}^{\ast 2}{e}^{z^{\ast }-\beta }+{A}_2^2{e}^{-3\beta}\\ {}+{e}^{-\beta}\left(1+2{A}_2+2{A}_2\beta -{A}_2^2+2{A}_2^2\beta +2{A}_2^2{\beta}^2\right)+\left({A}_2+\frac{9}{2}{A}_2^2+4{A}_2^2\beta \right){e}^{-2\beta}\end{array}\end{array}} $$
(58)

Substituting Eqs. (53) and (58) into Eq. (49) yields the first-order perturbation solution of Eq. (18):

$$ {c}^{\ast}\left({z}^{\ast}\right)+\varepsilon {\displaystyle \begin{array}{c}\begin{array}{c}={c}_0^{\ast }+\varepsilon {c}_1^{\ast}\\ {}=-{A}_2\left({e}^{-\beta }-{e}^{z^{\ast }-\beta }+{z}^{\ast}\right)\end{array}\\ {}\left\{\begin{array}{c}\left[1+\left(1+{e}^{-\beta}\right){A}_2+\left(2+2{e}^{-\beta }+{e}^{-2\beta}\right){A}_2^2\right]{z}^{\ast }+\left[\frac{A}{2}+\left({e}^{-\beta }+1\right){A}_2^2\right]{z}^{\ast 2}+\frac{A_2^2}{3}{z}^{\ast 3}\\ {}-{e}^{z^{\ast }-\beta}\left[{A}_2\left(2+2\beta +{e}^{-\beta}\right)+{A}_2^2\left(-1+2\beta +2{\beta}^2+4{e}^{-\beta }+{e}^{-2\beta}\right)+1\right]\\ {}\begin{array}{c}-\frac{A_2^2}{2}{e}^{2{z}^{\ast }-2\beta }+{z}^{\ast }{e}^{z^{\ast }-\beta}\left({A}_2-2{A}_2^2{e}^{-\beta}\right)+{A}_2^2{z}^{\ast 2}{e}^{z^{\ast }-\beta }+{A}_2^2{e}^{-3\beta}\\ {}+{e}^{-\beta}\left(1+2{A}_2+2{A}_2\beta -{A}_2^2+2{A}_2^2\beta +2{A}_2^2{\beta}^2\right)+\left({A}_2+\frac{9}{2}{A}_2^2+4{A}_2^2\beta \right){e}^{-2\beta}\end{array}\end{array}\right.\end{array}} $$
(59)

Compared with numerical solutions, the first-order perturbation solution (Eq. (59)) can achieve sufficient accuracy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, SJ., Wu, SJ. & Zheng, QT. Design method of a modified layered aerobic waste landfill divided by coarse material. Environ Sci Pollut Res 28, 2182–2197 (2021). https://doi.org/10.1007/s11356-020-10417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10417-8

Keywords

Navigation