Skip to main content
Log in

Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, the distribution and chemical fractionation of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in PM2.5 collected at Sikandarpur in Agra from September 2015 to February 2016 were carried out to evaluate their mobility potential, environmental, and human health risk through inhalation. Sequential extraction procedure was applied to partition the heavy metals into four fractions (soluble and exchangeable fraction (F1); carbonates, oxides, and reducible fraction (F2); bound to organic matter, oxidizable, and sulphidic fraction (F3); and residual fraction (F4)) in PM2.5 samples. The metals in each fraction were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Daily PM2.5 concentration ranged between 13 and 238 μg m−3 during the study period. For more than 92% of the days, the mass concentrations were greater than the National Ambient Air Quality Standard (NAAQS) set at 60 μg m−3. The total mass concentration of the eight metals was 3.3 μg m−3 that accounted for 2.5% of the PM2.5 mass concentration and followed the order Fe > Zn > Cu > Mn > Pb > Ni > Cd > Cr in dominance. The carcinogenic metals (Cd, Cr, Ni, and Pb) comprised 10% of the total metal determined. Almost all the metals had the highest proportion in the residual fraction (F4) except Ni, which had the highest proportion in the reducible fraction (F2). Chemical fractionation and contamination factor (CF) showed that Pb and Ni are readily mobilized and more bioavailable. Risk assessment code (RAC) showed that Cd, Cu, Mn, Ni, Pb, and Zn had medium environmental risk, while Cr and Fe had low risk. When the bioavailable (F1 + F2) concentrations were applied to calculate non-carcinogenic and carcinogenic risk, the results showed that the value of hazard index (HI) for toxic metals was 1.7 for both children and adults through inhalation. The integrated carcinogenic risk was 1.8 × 10−6 for children and 7.3 × 10−6 for adults, with both values being higher than the precautionary criterion (1 × 10−6). Enrichment factor (EF) calculations showed that Cd, Pb, Zn, and Ni were enriched being contributed by anthropogenic activities carried out in the industrial sectors of the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo JC (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96:612–625

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Pérez N, Hopke P (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Anake WU, Benson NU, Theophilus Tenebe I, Emenike PC, RE EAna G, Zhang S (2018) Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria. Hum Ecol Risk Assess Int J 1–13

  • ATSDR (2000) Agency for Toxic Substances and Disease Registry toxicological profile for manganese (update). Draft for public comment. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry. Draft Toxicological Profile for Cadmium. Atlanta, GA

  • Awasthi A, Agarwal R, Mittal SK, Singh N, Singh K, Gupta PK (2011) Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. J Environ Monit 13(4):1073–1081

    Article  CAS  Google Scholar 

  • Betha R, Behera SN, Balasubramanian R (2014) 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ Sci Technol 48:4327–4335

    Article  CAS  Google Scholar 

  • Cazier F, Dewaele D, Delbende A, Nouali H, Garçon G, Verdin A, Shirali P (2011) Sampling analysis and characterization of particles in the atmosphere of rural, urban and industrial areas. Procedia Environ Sci 4:218–227

    Article  CAS  Google Scholar 

  • Census India (2011) http://www.census2011.co.in/census/ district/517-agra.html, Accessed November 2013

  • CPCB (2014) Central pollution control board National Air Quality Index, Series CUPS/82/2014-15

  • Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X (2015) Trace element composition of PM2.5 and PM10 from Kolkata—a heavily polluted Indian metropolis. Atmos Pollut Res 6(5):742–750

    Article  CAS  Google Scholar 

  • Deshmukh DK, Deb MK, Suzuki Y, Kouvarakis GN (2013) Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Qual Atmos Health 6(1):95–110

    Article  CAS  Google Scholar 

  • Dubey J, Kumari KM, Lakhani A (2015) Chemical characteristics and mutagenic activity of PM2.5 at a site in the Indo-Gangetic Plain, India. Ecotoxicol Environ Saf 114:75–83

    Article  CAS  Google Scholar 

  • Espinosa AJF, Rodríguez MT, la Rosa FJB d, JCJ S (2002) A chemical speciation of trace metals for fine urban particles. Atmos Environ 36(5):773–780

    Article  Google Scholar 

  • Fang GC, Chang CN, Wu YS, Fu PPC, Yang DG, Chia-Chium C (1999) Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan. Sci Total Environ 234(1–3):203–212

    Article  CAS  Google Scholar 

  • Feng XD, Dang Z, Huang WL, Yang C (2009) Chemical speciation of fine particle bound trace metals. Int J Environ Sci Technol 6(3):337–346

    Article  CAS  Google Scholar 

  • Fuentes A, Llorens M, Saez J, Aguilar MI, Ortu JF, Meseguer VF (2008) Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour Technol 99:517–525

    Article  CAS  Google Scholar 

  • Fujiwara F, Santos MD, Marrero J, Polla G, Gomez D, Dawidowski L, Patricia Smichowski P (2006) Fractionation of eleven elements by chemical bonding from airborne particulate matter collected in an industrial city in Argentina. J Environ Monit 8:913–922

    Article  CAS  Google Scholar 

  • Gao J, Wang K, Wang Y, Liu S, Zhu C, Hao J, Tian H (2018) Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ Pollut 233:714–724

    Article  CAS  Google Scholar 

  • Garçon G, Dagher Z, Zerimech F, Ledoux F, Courcot D, Aboukais A (2006) Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicol in Vitro 20:519–528

    Article  CAS  Google Scholar 

  • Han YM, Du PX, Cao JJ, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  CAS  Google Scholar 

  • Han YJ, Kim HW, Cho SH, Kim PR, Kim WJ (2015) Metallic elements in PM2.5 in different functional areas of Korea: concentrations and source identification. Atmos Res 153:416–428

    Article  CAS  Google Scholar 

  • Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39(4):637–651

    Article  CAS  Google Scholar 

  • Hyvärinen AP, Raatikainen T, Brus D, Komppula M, Panwar TS, Hooda RK, Lihavainen H (2011) Effect of the summer monsoon on aerosols at two measurement stations in Northern India—part 1: PM and BC concentrations. Atmos Chem Phys Discuss 11(1)

  • IARC (2009) Complete list of agents evaluated and their classification. International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Classification/index.php Accessed on 3 Mar 2018

  • Jamali MK, Kazi TG, Afridi HI, Arain MB, Jalbani N, Memon AR (2007) Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. J Environ Sci Health A 42:649–659

    Article  CAS  Google Scholar 

  • Jan R, Roy R, Yadav S, Satsangi PG (2018) Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environ Geochem Hlth 40(1):255–270

    Article  CAS  Google Scholar 

  • Janssen NAH, Fischer P, Marra M, Ameling C, Cassee FR (2013) Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci Total Environ 463–464:20–26

    Article  CAS  Google Scholar 

  • Johansson C, Norman M, Gidhagen L (2007) Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ Monit Assess 127(1–3):477–487

    Article  CAS  Google Scholar 

  • Julien C, Esperanza P, Bruno M, Alleman LY (2011) Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. J Environ Monit 13(3):621–630

    Article  CAS  Google Scholar 

  • Kermani M, Dowlati M, Jonidi Jafari A, Rezaei Kalantari R (2017) Health impact caused by exposure to particulate matter in the air of Tehran in the past decade. Tehran Univ Med J TUMS Publications 74(12):885–892

    Google Scholar 

  • Khillare PS, Sarkar S (2012) Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmos Pollut Res 3(1):46–54

    Article  CAS  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204

    Article  CAS  Google Scholar 

  • Kulshrestha A, Massey DD, Masih J, Taneja A (2014) Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi-arid region of India. Aerosol Air Qual Res 14:1738–1751

    Article  CAS  Google Scholar 

  • Kumar M, Furumai H, Kurisu F, Kasuga I (2013) Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange: comparison of leaching tests applied to soil and soak away sediment. Chemosphere 90:796–804

    Article  CAS  Google Scholar 

  • Kumar MK, Sreekanth V, Salmon M, Tonne C, Marshall JD (2018) Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions. Environ Pollut 239:803–811

    Article  CAS  Google Scholar 

  • Lakhani A, Parmar RS, Satsangi GS, Prakash S (2008) Size distribution of trace metals in ambient air of Agra. Indian J Radio Space Phys 37:434–442

    CAS  Google Scholar 

  • Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N (2016) Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4. Environ Pollut 218:1074–1088

    Article  CAS  Google Scholar 

  • Leclercq B, Alleman LY, Perdrix E, Riffault V, Happillon M, Strecker A, Coddeville P (2017) Particulate metal bioaccessibility in physiological fluids and cell culture media: toxicological perspectives. Environ Res 156:148–157

    Article  CAS  Google Scholar 

  • Leclercq B, Kluza J, Antherieu S, Sotty J, Alleman LY, Perdrix E, Garçon G (2018) Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ Pollut 243:1434–1449

    Article  CAS  Google Scholar 

  • Ledoux F, Kfoury A, Delmaire G, Roussel G, El Zein A, Courcot D (2017) Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 181:713–724

    Article  CAS  Google Scholar 

  • Li H, Qian X, Hu W, Wang Y, Gao H (2013) Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci Total Environ 456:212–221

    Article  CAS  Google Scholar 

  • Li HM, Wang JH, Wang QG, Qian X, Qian Y, Yang M, Li FY, Lu H, Wang C (2015) Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: a case study in Nanjing, China. Atmos Environ 103:339–346

    Article  CAS  Google Scholar 

  • Li H, Wang QG, Shao M, Wang J, Wang C, Sun Y, Li F (2016) Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environ Pollut 208:655–662

    Article  CAS  Google Scholar 

  • Li H, Wu H, Wang QG, Yang M, Li F, Sun Y, Wang C (2017) Chemical partitioning of fine particle-bound metals on haze-fog and non-haze-fog days in Nanjing, China and its contribution to human health risks. Atmos Res 183:142–150

    Article  CAS  Google Scholar 

  • Lingard JJN, Tomlin AS, Clarke AG, Healey K, Hay AWM, Wild CP, Routledge MN (2005) A study of trace metal concentration of urban airborne particulate matter and its role in free radical activity as measured by plasmid strand break assay. Atmos Environ 39:2377–2384

    Article  CAS  Google Scholar 

  • Liu K, Shang Q, Wan C, Song P, Ma C, Cao L (2017) Characteristics and sources of heavy metals in PM2.5 during a typical haze episode in rural and urban areas in Taiyuan, China. Atmosphere 9(1):2

    Article  CAS  Google Scholar 

  • Loska K, Wiechuła D, Pelczar J (2005) Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils. Commun Soil Sci Plant Anal 36:1117–1128

    Article  CAS  Google Scholar 

  • Lum KR, Betteridge JS, Macdonald RR (1982) The potential availability of P, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in urban particulate matter. Environ Technol Lett 3:57–62

    Article  CAS  Google Scholar 

  • Massey D, Kulshrestha A, Masih J, Taneja A (2012) Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Build Environ 47:223–231

    Article  Google Scholar 

  • Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Pearson Education Limited, England (Chapter 1)

    Google Scholar 

  • Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R (2011) Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos Environ 45(25):4180–4191

    Article  CAS  Google Scholar 

  • Mukhtar A, Limbeck A (2013) Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: a review. Anal Chim Acta 774:11–25

    Article  CAS  Google Scholar 

  • NAAQS (2009) The gazette of India, ministry of environmental and forests notification. National Ambient Air Quality Standards 16

  • Nawrot TS, Kuenzli N, Sunyer J, Shi TM, Moreno T, Viana M, Heinrich J, Forsberg B, Kelly FJ, Sughis M, Nemery B, Borm P (2009) Oxidative properties of ambient PM2.5 and elemental composition: heterogeneous associations in 19 European cities. Atmos Environ 43:4595–4602

    Article  CAS  Google Scholar 

  • Nemati K, Bakar NKA, Abas MR, Sobhanzadeh E (2011) Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J Hazard Mater 192:402–410

    CAS  Google Scholar 

  • Nirmalkar J, Deshmukh DK, Deb MK, Tsai YI, Sopajaree K (2015) Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern Central India. Atmos Environ 117:41–50

    Article  CAS  Google Scholar 

  • Nriagu JO (1978) Lead in the atmosphere. In: Nriagu JO (ed) The biogeochemistry of lead in the environment. Part A. Ecological cycles. Elsevier, North Holland, Amsterdam, pp 137–184

    Google Scholar 

  • Nriagu JO (1980) Cadmium in the atmosphere and precipitation. In: Nriagu JO (ed) Cadmium in the environment, part 1. Ecological cycling. Wiley, New York, London, pp 71–114

    Google Scholar 

  • Ostro B, Malig B, Broadwin R, Basu R, Gold EB, Bromberger JT, Kravitz HM (2014) Chronic PM2.5 exposure and inflammation: determining sensitive subgroups in mid-life women. Environ Res 132:168–175

    Article  CAS  Google Scholar 

  • Pacyna JM (1986) Emission factors of atmospheric elements. In: Nriagn JO, Davidson CI (eds) Toxic metals in atmospheres. Wiley, New York

    Google Scholar 

  • Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC (2013) Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. J Environ Sci Health A 48(7):730–745

    Article  CAS  Google Scholar 

  • Pandey M, Pandey AK, Mishra A, Tripathi BD (2017) Speciation of carcinogenic and non-carcinogenic metals in respirable suspended particulate matter (PM10) in Varanasi, India. Urban Climate 19:141–154

    Article  Google Scholar 

  • Perez G, Lopez-Mesas M, Valiente M (2008) Assessment of heavy metals remobilization by fractionation: comparison of leaching tests applied to roadside sediments. Environ Sci Technol 42:2309–2315

    Article  CAS  Google Scholar 

  • Police S, Sahu SK, Tiwari M, Pandit GG (2018) Chemical composition and source apportionment of PM2.5 and PM2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology 37:143–153

    Article  CAS  Google Scholar 

  • Pramod RC, Gupta R, Gajghate DG, Satish RW (2012) Heavy metal pollution of ambient air in Nagpur City. Environ Monit Assess 184:2487–2496

    Article  CAS  Google Scholar 

  • Pui DY, Chen SC, Zuo ZL (2014) PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology 13:1–26

    Article  CAS  Google Scholar 

  • Puxbaum H, Gomiscek B, Kalina M, Bauer H, Salam A, Stopper S, Hauck H (2004) A dual site study of PM2.5 and PM10 aerosol chemistry in the larger region of Vienna, Austria. Atmos Environ 38(24):3949–3958

    Article  CAS  Google Scholar 

  • Ram K, Singh S, Sarin MM, Srivastava AK, Tripathi SN (2016) Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: a case study of haze and dust events. Atmos Res 174–175:52–61

    Article  CAS  Google Scholar 

  • Rastogi N, Singh A, Sarin MM, Singh D (2016) Temporal variability of primary and secondary aerosols over Northern India: impact of biomass burning emissions. Atmos Environ 125:396–403

    Article  CAS  Google Scholar 

  • Richter P, Grino P, Ahumada I, Giordano A (2007) Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos Environ 41:6729–6738

    Article  CAS  Google Scholar 

  • Roy R, Jan R, Yadav S, Vasave MH, Satsangi PG (2016) Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune, India. Air Qual Atmos Health 9(6):669–680

    Article  CAS  Google Scholar 

  • Salas BV, Wiener MS, Koytchev RZ, Badilla GL, Irigoyen RR, Beltrán MC, Nedev NR, Alvarez MC, Gonzalez NR, Rull JMB (2013) Copper corrosion by atmospheric pollutants in the electronics industry. Hindawi Publishing Corporation ISRN Corrosion, Article ID 846405, 7 pages https://doi.org/10.1155/2013/846405

  • Samura A, Al-Agha O, Tuncel SG (2003) Study of trace and heavy metals in rural and urban aerosols of Uludağ and Bursa (Turkey). Water Air Soil Pollut: Focus 3(5–6):111–129

    Article  Google Scholar 

  • Schleicher NJ, Norra S, Chai FH, Chen YZ, Wang SL, Cen K, Yu Y, Stüben D (2011) Temporal variability of trace metal mobility of urban particulate matter from Beijing-a contribution to health impact assessments of aerosols. Atmos Environ 45:7248–7265

    Article  CAS  Google Scholar 

  • See SW, Balasubramanian R (2008) Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos Environ 42:8852–8862

    Article  CAS  Google Scholar 

  • Singh K, Tiwari S, Jha AK, Aggarwal SG, Bisht DS, Murty BP, Gupta PK (2013) Mass-size distribution of PM10 and its characterization of ionic species in fine (PM2.5) and coarse (PM10–2.5) mode, New Delhi, India. Nat Hazards 68(2):775–789

    Article  Google Scholar 

  • Singla V, Pachauri T, Satsangi A, Kumari KM, Lakhani A (2012) Characterization and mutagenicity assessment of PM2.5 and PM10 PAH at Agra, India. Polycycl Aromat Compd 32:199–220

    Article  CAS  Google Scholar 

  • Smichowski P, Polla G, Gómez D (2005) Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review. Anal Bioanal Chem 381(2):302–316

    Article  CAS  Google Scholar 

  • Sun Y, Hu X, Wu J, Lian H, Chen Y (2014) Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Sci Total Environ 493:487–494

    Article  CAS  Google Scholar 

  • Tahri M, Benchrif A, Bounakhla M, Benyaich F, Noack Y (2017) Seasonal variation and risk assessment of PM2.5 and PM2.5–10 in the ambient air of Kenitra, Morocco. Environ Sci Process Impacts 19(11):1427–1436

    Article  CAS  Google Scholar 

  • Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M (2018) Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ Pollut 232:252–263

    Article  CAS  Google Scholar 

  • Taner S, Pekey B, Pekey H (2013) Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ 454:79–87

    Article  CAS  Google Scholar 

  • Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental-crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1–3):270–282

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1984) Health assessment document for manganese. Final draft. Cincinnati, OH, US Environmental Protection Agency, Office of Research and Development (Report No. EPA/600/8-83/013F) Accessed on 2 Feb 2018

  • U.S. Environmental Protection Agency (USEPA) (1989) Risk assessment guidance for super fund. Volume I: human health evaluation manual (part A). EPA/540/1-89/002 December http://www.epa.gov/swerrims/riskassessment/ragsa/index.htm Accessed on 5 Jan 2018

  • U.S. Environmental Protection Agency (USEPA) (2006) Office of air and radiation, Office of Air Quality Planning and Standards, fact sheet. United States Environmental Protection Agency, National Ambient Air Quality Standards (NAAQS). http://www.epa.gov/air/criteria.html Accessed on 8 Mar 2018

  • U.S. Environmental Protection Agency (USEPA) (2011a) Risk assessment guidance for superfund. In: Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, vol. I. http://www.epa.gov/oswer/riskassessment/human_health_exposure.htm Accessed on 12 Jan 2018

  • U.S. Environmental Protection Agency (USEPA) (2011b) The screening level (RSL) tables (last updated June 2011). Available on-line at: http://www.epa.gov/region9/superfund/prg/index.html Accessed on 17 Feb 2018

  • Varshney P, Saini R, Taneja A (2016) Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environ Geochem Health 38(2):593–605

    Article  CAS  Google Scholar 

  • Verma PK, Sah D, Kumari KM, Lakhani A (2017) Atmospheric concentrations and gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. Environ Sci Process Impacts 19(8):1051–1060

    Article  CAS  Google Scholar 

  • Wichmann H, Sprenger R, Wobst M, Bahadir M (2000) Combustion induced transport of heavy metals in the gas phase—a review. Fresenius Environ Bull 9(1):72–125

    CAS  Google Scholar 

  • World Health Organization (2007) Health risks of heavy metals from long-range transboundary air pollution (ISBN 978 92 8907179 6)

  • World Health Organization (2014) Ambient (outdoor) air pollution in cities database 2014. Retrieved 31 May 2015

  • Yadav S, Satsangi PG (2013) Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ Monit Assess 185(9):7365–7379

    Article  CAS  Google Scholar 

  • Yuan X, Huang H, Zeng G, Li H, Wang J, Zhou C, Liu Z (2011) Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour Technol 102(5):4104–4110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Anil Kottantharayil and Ms. Reshma Shinde, Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay for their help in analyzing samples by ICP-AES. We are thankful to Director and Head, Department of Chemistry, Dayalbagh Educational Institute, Agra, for providing us the necessary facilities.

Funding

This work was supported by the UGC-BSR (No. ETP/UGC Res. Fellowship/3089) and DST (Project No. SB/S4/AS-150/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Lakhani.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, D., Verma, P.K., Kandikonda, M.K. et al. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. Environ Sci Pollut Res 26, 19749–19762 (2019). https://doi.org/10.1007/s11356-019-05144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05144-8

Keywords

Navigation