Skip to main content

Advertisement

Log in

Remediation of arsenic-contaminated paddy soil by iron-modified biochar

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic contamination in paddy soils has aroused global concern due to its threats to food security and human health. Biochar modified with different iron materials was prepared for arsenic (As) immobilization in contaminated soils. Soil incubation experiments were carried to investigate the effects of biochar modified with Fe-oxyhydroxy sulfate (Biochar-FeOS), FeCl3 (Biochar-FeCl3), and zero-valent iron (Biochar-Fe) on the pH, NaHCO3-extractable As concentrations, and the As fractions in soils. The scanning electron microscope and X-ray diffraction analysis demonstrated that iron was successfully loaded onto the surface or embedded into the pores of the biochar. Addition of Biochar-FeOS, Biochar-FeCl3, and Biochar-Fe had no significant effects on the soil pH but significantly decreased the contents of NaHCO3-extractable As in soils by 13.95–30.35%, 10.97–28.39%, and 17.98–35.18%, respectively. Biochar-FeOS, Biochar-FeCl3, and Biochar-Fe treatments decreased the concentrations of non-specifically sorbed and specifically sorbed As fractions in soils, and increased the amorphous and poorly crystalline, hydrated Fe, Al oxide-bound, and residual As fractions. Compared with the other iron-modified biochars, Biochar-FeOS showed the most effective immobilization and has the potential for the remediation of As-contaminated paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrafioti E, Kalderis D, Diamadopoulos E (2014a) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314

    Article  CAS  Google Scholar 

  • Agrafioti E, Kalderis D, Diamadopoulos E (2014b) Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J Environ Manag 146:444–450

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99(3):19–33

    Article  CAS  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G, Slavkovich V, van Geen A, Graziano J, Ahsan H (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376(9737):252–258

    Article  CAS  Google Scholar 

  • Asmel NK, Yusoff ARM, Sivarama Krishna L, Majid ZA, Salmiati S (2017) High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent. Chem Eng J 317:343–355

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants ( Solanum lycopersicum L.). Sci Total Environ 454-455(5):598–603

    Article  CAS  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-jimenez E, Pardo T, Clemente R, Dawson JJ (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

    Article  CAS  Google Scholar 

  • Bolan N, Mahimairaja S, Kunhikrishnan A, Naidu R (2013) Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils. J Hazard Mater 261(20):725–732

    Article  CAS  Google Scholar 

  • Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo AR, Martín RA, Cortés J, Litter MI, Jean JS (2011) Arsenic removal from groundwater of the Chaco-Pampean plain (Argentina) using natural geological materials as adsorbents. Environ Lett 46(11):1297–1310

    CAS  Google Scholar 

  • Chatterjee S, De S (2017) Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane. Sep Purif Technol 179:357–368

    Article  CAS  Google Scholar 

  • Chen Z, Wang YP, Jiang XL, Fu D, Xia D, Wang HT, Dong GW, Li QB (2017) Dual roles of AQDS as electron shuttles for microbes and dissolved organicmatter involved in arsenic and ironmobilization in the arsenic-rich sediment. Sci Total Environ 574:1684–1694

    Article  CAS  Google Scholar 

  • Chen Z, Li H, Ma W, Han KZ, Wang HT, He N, Li QB, Wang YP (2018) Addition of graphene sheets enhances reductive dissolution of arsenic and iron from arsenic contaminated soil. Land Degrad Dev 29:572–584

    Article  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  CAS  Google Scholar 

  • Dong GW, Huang YH, Wang YP, Wang HT, He N, Li QB (2014) Role of nanoparticles in controlling arsenic release from sediments near a realgar tailing. Environ Sci Technol 48:7469–7476

    Article  CAS  Google Scholar 

  • Dong SK, Xu WL, Wu FF, Yan CX, Li DP, Jia HT (2016) Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant. Transactions of the Chinese Society of Agricultural Engineering 32(15):204–212

    Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66(2):413–421

    Article  CAS  Google Scholar 

  • Guha Mazumder DN (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–447

    CAS  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ Pollut 131(3):495–504

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157(10):2654–2662

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Zimmerman AR, Wang S, Gao B (2014) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216

    Article  CAS  Google Scholar 

  • Jackson BP, Miller WP (2000) Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Am J 64(5):1616–1622

    Article  CAS  Google Scholar 

  • Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2016) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1(8):339–344

    Article  CAS  Google Scholar 

  • Klüpfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48(10):5601–5611

    Article  CAS  Google Scholar 

  • Kong XF, Li M, Xue SG, Chen C, Wu C, Li X, Li Y (2016) Acid transformation of bauxite residue: conversion of its alkaline characteristics. J Hazard Mater 324(Pt B):382–390

    Google Scholar 

  • Kong XF, Guo Y, Xue SG, Hartley W, Wu C, Ye YZ, Cheng QY (2017) Natural evolution of alkaline characteristics in bauxite residue. J Clean Prod 143:224–230

    Article  CAS  Google Scholar 

  • Kong XF, Tian T, Xue SG, Hartley W, Huang LB, Wu C, Li CX (2018) Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation. Land Degrad Dev 29(1):58–67

    Article  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28(1):215–225

    Article  CAS  Google Scholar 

  • Mandal P (2017) An insight of environmental contamination of arsenic on animal health. Emerging Contaminants 3(1):17–22

    Article  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  CAS  Google Scholar 

  • Nazari B, Jorjani E, Hani H, Manafi Z, Riahi A (2014) Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. Trans Nonferrous Met Soc Chin 24:1152–1160

    Article  CAS  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283(3):134–142

    Article  CAS  Google Scholar 

  • Qiao JT, Li XM, Li FB (2018) Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. J Hazard Mater 344:958–967

    Article  CAS  Google Scholar 

  • Samsuri AW, Sadegh-Zadeh F, Seh-Bardan BJ (2013) Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering 1(4):981–988

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  Google Scholar 

  • Smebye A, Alling V, Vogt RD, Gadmar TC, Mulder J (2015) Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 142:100–105

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  Google Scholar 

  • Tang JW, Liao YP, Yang ZH, Chai LY, Yang WC (2016) Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J Soils Sediments 16(5):1519–1528

    Article  CAS  Google Scholar 

  • Vieira BRC, Pintor AMA, Boaventura RAR, Botelho CMS, Santos SC (2017) Arsenic removal from water using iron-coated seaweeds. J Environ Manag 192:224–233

    Article  CAS  Google Scholar 

  • Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham MB, Rinklebe J (2017) Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113:219–230

    Article  CAS  Google Scholar 

  • Wang CQ, Ma SF, Lu AH (2005) The formation conditions of jarosite and its environmental significance. Acta Petrologica Et M Ineralogica 24(6):607–611

    CAS  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395

    Article  CAS  Google Scholar 

  • Wang N, Xue X, Juhasz AL, Chang Z, Li H (2017) Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut 220:514–522

    Article  CAS  Google Scholar 

  • Wang J, Cheng QY, Xue SG, Rajendran M, Wu C, Liao JX (2018a) Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environ Sci Pollut Res 25(10):9998–10005

    Article  CAS  Google Scholar 

  • Wang J, Ye S, Xue SG, Hartley W, Wu H (2018b) The physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. Int Biodeterior Biodegrad 128(3):11–14

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436(2):309–323

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Yue X, Hartley W, Huang L, Mo JY (2016a) Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere 165:478–486

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Huang L, Hartley W, Mo JY, Wong MH (2016b) The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ Pollut 212(05):27–33

    Article  CAS  Google Scholar 

  • Wu C, Huang L, Xue SG, Huang YY, Hartley W, Cui MQ, Wong MH (2017a) Arsenic sorption by red mud-modified biochar produced from rice straw. Environ Sci Pollut Res 24(22):18168–18178

    Article  CAS  Google Scholar 

  • Wu C, Huang L, Xue SG, Pan WS, Zou Q, Hartley W, Wong MH (2017b) Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 168:969–975

    Article  CAS  Google Scholar 

  • Xiong ZS, Cai YG, Liang CZ (2016) Environmental chemical behavior of arsenic in paddy soil and the influence of iron on arsenic speciation. Soils 854–862 (In Chinese)

  • Xue SG, Zhu F, Kong XF, Wu C, Huang L, Huang N, Hartley W (2016) A review of the characterization and revegetation of bauxite residues (red mud). Environ Sci Pollut Res 23(2):1120–1132

    Article  CAS  Google Scholar 

  • Xue SG, Shi LZ, Wu C, Wu H, Qin YY, Pan WS, Hartley W, Cui MQ (2017) Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res 156:23–30

    Article  CAS  Google Scholar 

  • Xue SG, Wang J, Wu C, Shi LZ, Hartley W, Wu H, Zhu F, Cui MQ (2018) Physiological response of Polygonum perfoliatum L. following exposure to elevated manganese concentrations. Environ Sci Pollut Res 25(1):132–140

    Article  CAS  Google Scholar 

  • Yan XL, Lin LY, Liao XY, Zhang WB, Wen Y (2013) Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng. Chemosphere 93(4):661–667

    Article  CAS  Google Scholar 

  • Yang Z, Liu L, Chai L, Liao Y, Yao W, Xiao R (2015) Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ Sci Pollut Res 22(16):12624–12632

    Article  CAS  Google Scholar 

  • Yang L, Li B, Wang C, Liu Q, Zhang Q (2016) Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination. Environ Sci 9:040

    Google Scholar 

  • Zhao HS, Stanforth R (2001) Competitive adsorption of phosphate and arsenate on goethite. Environ Sci Technol 35(24):4753–4757

    Article  CAS  Google Scholar 

  • Zheng C, YP W, Xia D, Li QB (2016) Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J Hazard Mater 311:20–29

    Article  CAS  Google Scholar 

  • Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42(13):5008–5013

    Article  CAS  Google Scholar 

  • Zhu F, Liao JX, Xue SG, Hartley W, Zou Q, Wu H (2016) Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography. Sci Total Environ 573:155–163

    Article  CAS  Google Scholar 

  • Zhu F, Hou JT, Xue SG, Wu C, Wang QL, Hartley W (2017) Vermicompost and gypsum amendments improve aggregate formation in bauxite residue. Land Degrad Dev 28(7):2109–2120

    Article  Google Scholar 

  • Zhu F, Cheng QY, Xue SG, Li CX, Hartley W, Wu C, Tian T (2018) Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas. Land Degrad Dev 29(1):138–149

    Article  Google Scholar 

  • Zou Q, An WH, Wu C, Li WC, Fu AQ, Xiao RY, Chen HK, Xue SG (2017) Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environ Chem Lett 15:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 41771512), the Research Grants Council of the Hong Kong Special Administrative Region, China (No. 28100014), the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts598) and the open fund for valuable instruments and equipment of Central South University (No. CSUZC201712) is gratefully acknowledged. Chuan Wu acknowledges the Croucher Chinese Visitorships 2017/2018 of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShengGuo Xue or WaiChin Li.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Cui, M., Xue, S. et al. Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ Sci Pollut Res 25, 20792–20801 (2018). https://doi.org/10.1007/s11356-018-2268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2268-8

Keywords

Navigation