Skip to main content
Log in

Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Abiotic stress factors, including ultraviolet (UV) radiation, significantly affect insect life. UV-A radiation (320–400 nm) has been widely used for insect control since it increases the production of ROS and causes oxidative cell damage. In the present study, we evaluated the effects of UV-A irradiation on an important pest in China, the ear-cutting caterpillar, Mythimna separata (Lepidoptera: Noctuidae). We exposed 3-day-old M. separata adults to UV-A radiation for different periods of time (0, 30, 60, 90, and 120 min) and evaluated the resulting total antioxidant capacity and the activity of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and glutathione-S-transferase. The total antioxidant capacity significantly increased after exposure to UV-A radiation for 60 min but decreased after 90 and 120 min of exposure, compared with the control. The antioxidant activity of glutathione-S-transferase, superoxide dismutase, catalase, and peroxidase increased after 60-min exposure, and it was decreased at the longest exposure period 120 min. The longest exposure time period relatively activates the xenobiotic detoxifying enzymes like glutathione-S-transferase, superoxide dismutase, catalase, and peroxidase enzymes. The longest duration of UV-A radiation may cooperate with pesticide detoxification mechanism in insects, making them more susceptible to insecticides. Our results demonstrated that UV irradiation causes oxidative stress, affects the activity of antioxidant enzymes, and disturbs the physiology of M. separata adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad S, Duval DL, Weinhold LC, Pardini RS (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Bioche 21:563–572

    Article  CAS  Google Scholar 

  • Ali A, Rashid MA, Huang QY, Lei CL (2016) Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ Sci Pollut Res 1–6

  • Antignus Y (2000) Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71:213–220

    Article  CAS  Google Scholar 

  • Boldt R, Scandalios JG (1995) Circadian regulation of the Cat3 catalase gene in maize (Zea mays L.): entrainment of the circadian rhythm of Cat3 by different light treatments. Plant J 7:989–999

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    Article  CAS  Google Scholar 

  • Cao Z, Lindsay G, Isaacs NW (2007) Mitochondrial peroxiredoxins. Subcell Biochem 44:295–315

    Article  Google Scholar 

  • Chen SD, Hu BH (2000) Plant protection in China in fifty years. Agriculture Press, Beijing

    Google Scholar 

  • Chen RL, Sun YJ, Wang SY, Zhai BP, Bao XZ (1995) Migration of the oriental armyworm Mythimna separata in East Aisa in relation to weather and climate. I. Northeastern China. In: Drake VA, Gatehouse AG (eds) Insect migration: tracking resource in space and time. Cambridge University Press, Cambridge, pp 93–104

    Chapter  Google Scholar 

  • Chun BF (1981) A new artificial diet for army worm. Acta Entomol Sinica 24:379–383

    Google Scholar 

  • Cockell CS (2001) A photobiological history of earth. Ecosystems, evolution, and ultraviolet radiation. Springer, New York, pp 1–35

    Book  Google Scholar 

  • Coles B, Ketterer B, Hinson JA (1990) The role of glutathione and glutathione transferases in chemical cardnogenesi. Crit Rev Biochem Mol Biol 25:47–70

    Article  CAS  Google Scholar 

  • Dahms HU, Lee JS (2010) UV radiation in marine ectotherms: molecular effects and responses. Aquat Toxicol 97:3–14

    Article  CAS  Google Scholar 

  • Dubovskiy I, Martemyanov V, Vorontsova Y, Rantala M, Gryzanova E, Glupov V (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Phys C 148:1–5

    CAS  Google Scholar 

  • Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem 29:187–197

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  • Foyer C, Descourvieres P, Kunert K (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res 674:3–22

    Article  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Bio Med 29:1106–1114

    Article  CAS  Google Scholar 

  • Graves JA, Metukuri M, Scott D, Rothermund K, Prochownik EV (2009) Regulation of reactive oxygen species homeostasis by peroxiredoxins and c-Myc. J Biol Chem 284:6520–6529

    Article  CAS  Google Scholar 

  • Griswold CM, Matthews AL, Bewley KE, Mahaffey JW (1993) Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster. Genetics 134:781–788

    CAS  Google Scholar 

  • Gunn A (1998) The determination of larval phase coloration in the African armyworm Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomol Exp Appl 86:125–133

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J bio Chem 249:7130–7139

    CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part II. Crit Rev Biochem Mol Biol 30:521–600

    Article  Google Scholar 

  • Heck DE, Vetrano AM, Mariano TM, Laskin JD (2003) UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem 278:22432–22436

    Article  CAS  Google Scholar 

  • John S, Kale M, Rathore N, Bhatnagar D (2001) Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J Nutr Biochem 12:500–504

    Article  CAS  Google Scholar 

  • Jurkiewicz BA, Buettner GR (1994) Ultraviolet lightinduced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobio 59:1–4

    Article  CAS  Google Scholar 

  • Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 93–110

    Chapter  Google Scholar 

  • Karthi S, Sankari R, Shivakumar MS (2014) Ultraviolet-B light induced oxidative stress: effects on antioxidant response of Spodoptera litura. J Photoch Photobio B 135:1–6

    Article  CAS  Google Scholar 

  • Kojima Y, Aoyagi K, Yasue T (2005) Effect of lithium ion addition on afterglow time of green-emitting Ce 3+ and Pr 3+ codoped CaS phosphor by black light irradiation. J Lumin 115:13–18

    Article  CAS  Google Scholar 

  • Konno Y, Shishido T (1992) Distribution of glutathione S-transferase activity in insect tissues. Appl Entomol Zool 27:391–397

    CAS  Google Scholar 

  • Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress. J Insect Physiol 52:11–20

    Article  CAS  Google Scholar 

  • Kuang-po L, Hong-hsiang W, Wan-sei W (1964) Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Journal of Plant Protection 3:101–110

    Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Lijun L, Xuemei L, Yaping G, Enbo M (2005) Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environ Toxicol Phar 20:412–416

    Article  Google Scholar 

  • Luck H (1971) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–893

    Google Scholar 

  • Mackerness SAH, Surplus SL, Blake P, John CF, Buchanan-Wollaston V, Jordan BR, Thomas B (1999) Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant Cell Environ 22:1413–1423

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Bioch 47:469–474

    Article  CAS  Google Scholar 

  • Mathews MC, Summers CB, Felton GW (1997) Ascorbate peroxidase: a novel antioxidant enzyme in insects. Arch Insect Biochem 34:57–68

    Article  CAS  Google Scholar 

  • Mazza CA, Izaguirre MM, Zavala J, Scopel AL, Ballare CL (2002) Insect perception of ambient ultraviolet-B radiation. Ecol Lett 5:722–726

    Article  Google Scholar 

  • McMillan TJ, Leatherman E, Ridley A, Shorrocks J, Tobi SE, Whiteside JR (2008) Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol 60:969–976

    Article  CAS  Google Scholar 

  • Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL (2009) Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol 55:588–592

    Article  CAS  Google Scholar 

  • Meng JY, Zhang CY, Lei CL (2010) A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. J Insect Physiol 56:405–411

    Article  CAS  Google Scholar 

  • Meyer-Rochow VB, Kashiwagi T, Eguchi E (2002) Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 33:23–31

    Article  CAS  Google Scholar 

  • Munday R, Winterbourn CC (1989) Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem Pharmacol 38:4349–4352

    Article  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  Google Scholar 

  • Polte T, Tyrrell RM (2004) Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression. Free Radical Bio Med 36:1566–1574

    Article  CAS  Google Scholar 

  • Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photoch Photobio B 63:88–102

    Article  CAS  Google Scholar 

  • Reddy KP, Subhani SM, Khan PA, Kumar KB (1985) Effect of light and benzyladenine on dark-treated growing rice (Oryza sativa) leaves II. Changes in peroxidase activity Plant cell physiol 26:987–994

    Article  CAS  Google Scholar 

  • Ruilo C, Ziangshi B (1987) Research on the migration of oriental armyworm in China and a discussion of management strategy. Inter J Trop Insect Sci 8:571–572

    Article  Google Scholar 

  • Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL (2012) The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J Insect Physiol 58:830–836

    Article  CAS  Google Scholar 

  • Sashidhara KV, Singh SP, Srivastava A, Puri A (2011) A Identification of the antioxidant principles of Polyalthia longifolia var. pendula using TEAC assay. Nat Prod Res 25:918–926

    Article  CAS  Google Scholar 

  • Schauen M, Hornig-Do HT, Schomberg S, Herrmann G, Wiesner RJ (2007) Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radical Bio Med 42:499–509

    Article  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:313–323

    Article  Google Scholar 

  • Slater TF (1984) Overview of methods used for detecting lipid peroxidation. Meth Enzymol 58:283–293

    Article  Google Scholar 

  • Tabatabaie T, Floyd RA (1994) Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch Biochem Biophys 314:112–119

    Article  CAS  Google Scholar 

  • Urbach F (1989) The biological effects of increased ultraviolet radiation: an update. Photochem Photobio 50(4): 439-441

  • Vile GF, Tyrrell RM (1995) UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radical Bio Med 18:721–730

    Article  CAS  Google Scholar 

  • Wang Y, Oberley LW, Murhammer DW (2001) Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Bio Med 30:1254–1262

    Article  CAS  Google Scholar 

  • Wang GP, Zhang QW, Ye ZH, Luo LZ (2006) The role of nectar plants in severe outbreaks of armyworm Mythimna separata (Lepidoptera: Noctuidae) in China. Bull Entomol Res 96:445–455

    Google Scholar 

  • Zhang CY, Meng JY, Wang XP, Lei CL (2011) Effects of UV-A exposures on longevity and reproduction in Helicoverpa armigera, and on the development of its F1 generation. Insect Sci 18:697–702

    Article  Google Scholar 

  • Zhao H, Yi X, Hu Z, Hu M, Chen S, Dong X (2013) RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS One 8:e59527

    Article  CAS  Google Scholar 

  • Zou SW (1956) Review of the armyworm damage and control in the historical in China. Entomol Knowl 2:241–446

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Department Public Benefit (Agriculture) Research Foundation (201403031) and the National Natural Science Foundation of China (No. 30871639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Liang Lei.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Rashid, M.A., Huang, Q.Y. et al. Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae). Environ Sci Pollut Res 24, 8392–8398 (2017). https://doi.org/10.1007/s11356-017-8514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8514-7

Keywords

Navigation