Skip to main content
Log in

Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, manganese peroxidase (MnP) from an indigenous white-rot fungus Ganoderma lucidum IBL-05 was insolubilized in the form of cross-linked enzyme aggregates (CLEAs) using various aggregating agents, i.e., acetone, ammonium sulfate, ethanol, 2-propanol, and tert-butanol, followed by glutaraldehyde (GA) cross-linking. The precipitant type, MnP, and GA concentrations affected the CLEAs activity recovery and aggregation yield. Among precipitants used, acetone appeared to be the most efficient aggregation agent, providing the highest activity recovery and aggregation yield of 31.26 and 73.46%, respectively. Optimal cross-linking was noticed using 2.0% (v/v) GA and 8:1 (v/v) MnP to GA ratio at 3.0 h cross-linking time under continuous agitation at 4 °C. The highest recovered activity and aggregation yield were determined to be 47.57 and 81.26%, respectively. The MnP-CLEAs, thus synthesized, were tested to investigate their bio-catalytic capacity for removing two known endocrine-disrupting chemicals (EDCs), e.g., nonylphenol and triclosan in a packed bed reactor system. The insolubilized MnP efficiently catalyzed the biodegradation of both EDCs, transforming over 80% in the presence of MnP-based system. A maximal of 100% decolorization was recorded for Sitara textile (SIT-based) effluent, followed by 95.5% for Crescent textile (CRT-based) effluent, 88.0% for K&N textile (KIT-based) effluent, and 84.2% for Nishat textile (NIT-based) effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asgher M, Iqbal HMN (2013) Enhanced catalytic features of sol–gel immobilized MnP isolated from solid state culture of Pleurotus ostreatus IBL-02. Chin Chem Lett 24(4):344–346

    Article  CAS  Google Scholar 

  • Asgher M, Aslam B, Iqbal HMN (2013) Novel catalytic and effluent decolorization functionalities of sol-gel immobilized Pleurotus ostreatus IBL-02 manganese peroxidase produced from bio-processing of wheat straw. Chin J Catal 34(9):1756–1761

    Article  CAS  Google Scholar 

  • Asgher M, Kamal S, Iqbal HMN (2012) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chem Cent J 6(1):1

    Article  Google Scholar 

  • Asgher M, Ramzan M, Bilal M (2016) Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin J Catal 37(4):561–570

    Article  CAS  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Proc Biochem 41(3):525–539

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Ramzan M (2015) Purification and biochemical characterization of extracellular manganese peroxidase from Ganoderma lucidum IBL-05 and its application. Sci Res Ess 10(14):456–464

    Article  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017a) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2017b) Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J Environ Manag 188:137–143

    Article  CAS  Google Scholar 

  • Boyd GR, Palmeri JM, Zhang S, Grimm DA (2004) Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Sci Total Environ 333(1):137–148

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67(4):770–778

    Article  CAS  Google Scholar 

  • Eibes G, López C, Moreira MT, Feijoo G, Lema JM (2007) Strategies for the design and operation of enzymatic reactors for the degradation of highly and poorly soluble recalcitrant compounds. Biocatal Biotransform 25(2–4):260–268

    Article  CAS  Google Scholar 

  • Iqbal HMN, Asgher M (2013) Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04. Protein Pept Lett 20(5):591–600

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Liu ZH, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407(2):731–748

    Article  CAS  Google Scholar 

  • Petrovic M, Solé M, López De Alda MJ, Barceló D (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem 21(10):2146–2156

    Article  CAS  Google Scholar 

  • Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169

    Article  CAS  Google Scholar 

  • Šekuljica NŽ, Prlainović NŽ, Jakovetić SM, Grbavčić SŽ, Ognjanović ND, Knežević-Jugović ZD, Mijin DŽ (2016) Removal of anthraquinone dye by cross-linked enzyme aggregates from fresh horseradish extract. CLEAN–Soil, Air, Water 44(9999):1–10

    Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Analytical Biochem 351(2):207–213

    Article  CAS  Google Scholar 

  • Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477

    Article  CAS  Google Scholar 

  • Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2(3):195–200

    Article  CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manag 91:1915–1929

    Article  CAS  Google Scholar 

  • Šulek F, Fernández DP, Knez Ž, Habulin M, Sheldon RA (2011) Immobilization of horseradish peroxidase as crosslinked enzyme aggregates (CLEAs). Proc. Biochem. 46(3):765–769

    Article  Google Scholar 

  • Taboada-Puig R, Junghanns C, Demarche P, Moreira MT, Feijoo G, Lema JM, Agathos SN (2011) Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. Bioresour Technol 102(11):6593–6599

    Article  CAS  Google Scholar 

  • Tandjaoui N, Tassist A, Abouseoud M, Couvert A, Amrane A (2015) Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of Brassica rapa peroxidase. Biocatal Agric Biotechnol 4(2):208–213

    Google Scholar 

  • Yamak O, Kalkan NA, Aksoy S, Altinok H, Hasirci N (2009) Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization. Proc. Biochem. 44(4):440–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was a part of a research project focused on the development of ligninolytic enzymes for industrial applications. The financial support provided by the Higher Education Commission, Islamabad, Pakistan is thankfully acknowledged. The authors are also grateful to the State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China for providing technical and analytical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Asgher, M., Iqbal, H.M.N. et al. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ Sci Pollut Res 24, 7035–7041 (2017). https://doi.org/10.1007/s11356-017-8369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8369-y

Keywords

Navigation