Skip to main content
Log in

Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study evaluated decabromodiphenyl ether (BDE-209) anaerobic debromination and bacterial community changes in mangrove sediment. BDE-209 debromination rates were enhanced with zerovalent iron compared to without zerovalent iron in the sediment. BDE-209 debromination rates in microcosms constructed with sediments collected in autumn were higher than in microcosms constructed with sediments collected in spring and were higher at the Bali sampling site than the Guandu sampling site. The intermediate products resulting from the reductive debromination of BDE-209 in sediment were nona-BDE (BDE-206, BDE-207), octa-BDEs (BDE-196, BDE-197), hepta-BDEs (BDE-183, BDE-184, BDE-191), hexa-BDEs (BDE-137, BDE-138, BDE-154, BDE-157), penta-BDEs (BDE-85, BDE-99, BDE-100, BDE-126), tetra-BDEs (BDE-47, BDE-49, BDE-66, BDE-77), tri-BDEs (BDE-17, BDE-28), and di-BDEs (BDE-15). Fifty bacterial genera associated with BDE-209 debromination were identified. Overall, 12 of the 50 bacterial genera were reported to be involved in dehalogenation of aromatic compounds. These bacteria have high potential to be BDE-209 debromination bacteria. Different combinations of bacterial community composition exhibit different abilities for BDE-209 anaerobic debromination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Mailem DM, Eliyas M, Khanafer M, Radwan SS (2015) Biofilms constructed for the removal of hydrocarbon pollutants from hypersaline liquids. Extremophiles 19:189–196. doi:10.1007/s00792-014-0698-x

    Article  CAS  Google Scholar 

  • Andrade LL, Leite DCA, Ferreir EM, Ferreir LQ, Paula GR, Maguire MJ, Hubert CRJ, Peixoto RS, Domingues RMCP, Rosado AS (2012) Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol 12:186–195. doi:10.1186/1471-2180-12-186

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. doi:10.1038/ngeo101

    Article  CAS  Google Scholar 

  • Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res Int 21:9578–9588. doi:10.1007/s11356-014-3036-z

    Article  CAS  Google Scholar 

  • Chang BV, Chang IT, Yuan SY (2008) Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol 80:145–149. doi:10.1007/s00128-007-9333-1

    Article  CAS  Google Scholar 

  • Chang BV, Lu ZJ, Yuan SY (2009) Anaerobic degradation of nonylphenol in subtropical mangrove sediments. J Hazard Mater 165:162–167. doi:10.1016/j.jhazmat.2008.09.085

    Article  CAS  Google Scholar 

  • Chen CY, Tien CJ, Sun YM, Hsieh CY, Lee CC (2013) Influence of water quality parameters on occurrence of polybrominated diphenyl ether in sediment and sediment to biota accumulation. Chemosphere 90:2420–2427. doi:10.1016/j.chemosphere.2012.10.073

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879

    Article  CAS  Google Scholar 

  • De Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624. doi:10.1016/S0045-6535(01)00225-9

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  • Gerecke AC, Hartmann PC, Heeb NV, Kohler HPE, Giger W, Schmid P, Zennegg M, Kohler M (2005) Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol 39:1078–1083. doi:10.1021/es048634j

    Article  CAS  Google Scholar 

  • Hausler S, Weber M, Siebert C, Holtappels M, Noriega-Ortega BE, De Beer D, Ionescu D (2014) Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea. FEMS Microbiol Ecol 90:956–969. doi:10.1111/1574-6941.12449

    Article  Google Scholar 

  • He Q, Sanford RA (2002) Induction characteristics of reductive dehalogenation in the ortho-halophenol-respiring bacterium, Anaeromyxobacter dehalogenans. Biodegradation 13:307–316. doi:10.1023/A:1022342421909

    Article  CAS  Google Scholar 

  • Huang HW, Chang BV, Lee CC (2014) Reductive debromination of decabromodiphenyl ether by anaerobic microbes from river sediment. Int Biodeterior Biodegrad 87:60–65. doi:10.1016/j.ibiod.2013.10.011

    Article  CAS  Google Scholar 

  • Jesenska A, Sedlacek I, Damborsky J (2000) Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria. Appl Environ Microbiol 66:219–222. doi:10.1128/AEM.66.1.219-222.2000

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2005) Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ Sci Technol 39:2280–2286. doi:10.1021/es048846g

    Article  CAS  Google Scholar 

  • Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2011) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87:216–224. doi:10.1002/jctb.2699

    Article  Google Scholar 

  • Li CH, Wong YS, Tam NFY (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Biores Technol 101:8083–8092. doi:10.1016/j.biortech.2010.06.005

    Article  CAS  Google Scholar 

  • Li H, Zhang Q, Wang XL, Ma XY, Lin KF, Liu YD, JD G, SG L, Shi L, Lu Q, Shen TT (2012) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour Technol 124:129–136. doi:10.1016/j.biortech.2012.08.033

    Article  CAS  Google Scholar 

  • Li Y, Li X, Liu Y, Wang ET, Ren C, Liu W, Xu H, Wu H, Jiang N, Li Y, Zhang X, Xie Z (2016) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Syst Appl Microbiol 39:195–202. doi:10.1016/j.syapm.2016.02.004

    Article  CAS  Google Scholar 

  • Liu C, Wang SK, Lu YB (2000) Chemical characterization of river sediment in Taiwan. Toxicol Environ Chem 76:205–218. doi:10.1080/02772240009358929

  • Lohner ST, Spormann AM (2013) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos Trans R Soc Lond Ser B Biol Sci 368:20120326–20120335. doi:10.1098/rstb.2012.0326

    Article  Google Scholar 

  • Lu M, Zhang ZZ, Wu XJ, Xu YX, Su XL, Zhang M, Wang JX (2013) Biodegradation of decabromodiphenyl ether (BDE-209) by a metal resistant strain, Bacillus cereus JP12. Bioresour Technol 149:8–15. doi:10.1016/j.biortech.2013.09.040

    Article  CAS  Google Scholar 

  • Oba Y, Futagami T, Amachi S (2014) Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol. J Biosci Bioeng 117:310–317. doi:10.1016/j.jbiosc.2013.08.011

    Article  CAS  Google Scholar 

  • Pandey J, Heipieper HJ, Chauhan A, Arora PK, Prakash D, Takeo M, Jain RK (2011) Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 92:597–607. doi:10.1007/s00253-011-3254-y

    Article  CAS  Google Scholar 

  • Redwood MD, Deplanche K, Baxter-Plant VS, Macaskie LE (2008) Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. Biotechnol Bioeng 99:1045–1054. doi:10.1002/bit.21689

    Article  CAS  Google Scholar 

  • Schreiber T, Gassmann K, Gotz C, Hubenthal U, Moors M, Krause G, Merk HF, Nguyen NH, Scanlan TS, Abel J, Rose CR, Fritsche E (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118:572–578. doi:10.1289/ehp.0901435

    Article  CAS  Google Scholar 

  • Shi G, Yin H, Ye J, Peng H, Li J, Luo C (2013) Aerobic biotransformation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa. Chemosphere 93:1487–1493. doi:10.1016/j.chemosphere.2013.07.044

    Article  CAS  Google Scholar 

  • Shih YH, Tai YT (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 78:1200–1206. doi:10.1016/j.chemosphere.2009.12.061

    Article  CAS  Google Scholar 

  • Shih YH, Chou HL, Peng YH (2012) Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge. J Hazard Mater 213–214:341–346. doi:10.1016/j.jhazmat.2012.02.009

    Article  Google Scholar 

  • Smidt H, deVos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73. doi:10.1146/annurev.micro.58.030603.123600

    Article  CAS  Google Scholar 

  • Stiborova H, Vrkoslavova J, Pulkrabova J, Poustka J, Hajslova J, Demnerova K (2015) Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Sci Total Environ 533:439–445. doi:10.1016/j.scitotenv.2015.06.131

    Article  CAS  Google Scholar 

  • Sun WM, Li JW, Jiang L, Sun ZL, MY F, Peng XT (2015) Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl Microbiol Biotechnol 99:8751–8764. doi:10.1007/s00253-015-6748-1

    Article  CAS  Google Scholar 

  • Tang S, Bai J, Yin H, Ye J, Peng H, Liu Z, Dang Z (2014) Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Chemosphere 114:255–261. doi:10.1016/j.chemosphere.2014.05.009

    Article  CAS  Google Scholar 

  • Tseng LH, Li MH, Tsai SS, Lee CW, Pan MH, Yao WJ, Hsu PC (2008) Developmental exposure to decabromodiphenyl ether (PBDE-209): effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere 70:640–647. doi:10.1016/j.chemosphere.2007.06.078

    Article  CAS  Google Scholar 

  • Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol 7:211. doi:10.3389/fmicb.2016.00211

    Article  Google Scholar 

  • Xu J, Wang P, Guo W, Dong J, Wang L, Dai S (2006) Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 65:1445–1451. doi:10.1016/j.chemosphere.2006.04.042

    Article  CAS  Google Scholar 

  • Yang CW, Huang HW, Chao WL, Chang BV (2015a) Bacterial communities associated with aerobic degradation of polybrominated diphenyl ethers from river sediments. Environ Sci Pollut Res 22:3810–3819. doi:10.1007/s11356-014-3626-9

    Article  CAS  Google Scholar 

  • Yang Y, Wang Z, He T, Dai Y, Xie S (2015b) Sediment bacterial communities associated with anaerobic biodegradation of bisphenol-A. Microb Ecol 70:97–104. doi:10.1007/s00248-014-0551-x

    Article  CAS  Google Scholar 

  • Yousuf B, Kumar R, Mishra A, Jha B (2014) Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach. FEMS Microbiol Lett 360:117–125. doi:10.1111/1574-6968.12593

    Article  CAS  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077. doi:10.1016/j.marpolbul.2005.06.006

    Article  CAS  Google Scholar 

  • Zhang W, Zhang M, An S, Lin K, Li H, Cui C, Fu R, Zhu J (2012) The combined effect of decabromodiphenyl ether (BDE-209) and copper (Cu) on soil enzyme activities and microbial community structure. Environ Toxicol Pharmacol 34:358–369. doi:10.1016/j.etap.2012.05.009

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan, Republic of China (grant no. MOST 104-2313-B-031-001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bea-Ven Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Diane Purchase

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CW., Lee, CC., Ku, H. et al. Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment. Environ Sci Pollut Res 24, 5391–5403 (2017). https://doi.org/10.1007/s11356-016-8259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8259-8

Keywords

Navigation