Skip to main content

Advertisement

Log in

A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to its high adaptability, cassava (Manihot esculenta Crantz) is one of the world’s most cultivated and consumed plants after maize and rice. However, there are relatively few scientific studies on this important crop. The objective of this review was therefore to summarize and discuss the available information on cassava cropping in order to promote sustainable practices in terms of production and consumption. Cassava cultivation has been expanding recently at the global scale and is widely consumed in most regions of South America, Africa, and Asia. However, it is also characterized by the presence in its roots of potentially toxic hydrocyanic acid. Furthermore, cassava can also absorb pollutants as it is currently cultivated near roads or factories and generally without consideration for potential sources of soil, water, or atmospheric pollution. Careful washing, peeling, and adequate preparation before eating are therefore crucial steps for reducing human exposure to both environmental pollutants and natural hydrocyanic acid. At present, there is not enough precise data available on this staple food crop. To improve our knowledge on the nutritive benefits versus health risks associated with cassava consumption, further research is necessary to compare cassava cultivars and precisely study the influence of preparation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achidi AU, Ajayi O a, Maziya-dixon B, Bokanga M (2005) The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. J Food Process Preserv 32:486–502. doi:10.1111/j.1745-4549.2007.00165.x

    Article  Google Scholar 

  • Addo MA (2010) Heavy metal contaminations in soil and cassava harvested near a cement processing facility in the Volta Region, Ghana: implications of health risk for the population living in the vicinity. 71–83.

  • Adjei-Nsiah S, Owuraku S-D (2012) Promoting cassava as an industrial crop in Ghana: effects on soil fertility and farming system sustainability. Appl Environ Soil Sci. doi:10.1155/2012/940954

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals. Springer

  • Ano O, Eke-Okoro N, Egesi N (2013) Heavy metals (Cd, Ni and Pb) pollution effects on cassava (Manihot esculenta Crantz). Int J Biodivers Conserv 5:640–646

    Google Scholar 

  • Austruy A, Laplanche C, Mombo S et al (2016) Ecological changes in historically polluted soils: metal(loid) bioaccumulation in microarthropods and their impact on community structure. Geoderma 271:181–190. doi:10.1016/j.geoderma.2016.02.011

    Article  CAS  Google Scholar 

  • Austruy A, Shahid M, Xiong T et al (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soils Sediments 14:666–678. doi:10.1007/s11368-014-0862-z

    Article  Google Scholar 

  • Avoaja D, Eze V, Owunna N (2013) Microbiological and physicochemical characteristics of soil receiving palm oil mill effluent in Umuahia, Abia State, Nigeria. J Nat Sci Res 3:163–170. doi:10.12691/jaem-3-1-4

    Google Scholar 

  • Azmat R, Saba H, Shabana A (2006) Phyotoxicity of Pb: I effect of Pb on germination, growth, morphology and histomorphology of Phaseolus mungo and Lens culinaris. Pakistan J Biol Sci 9:979–984. doi:10.3923/pjbs.2006.979.984

    Article  CAS  Google Scholar 

  • Bassey FI, Tesi GO, Nwajei GE, Tsafe a I (2013) Assessment of heavy metal contamination in soils around cassava processing mills in sub-urban areas of Delta State, Southern Nigeria 1 * C. M. A. J Basic Appl Sci 21:96–104

    Google Scholar 

  • Bellotti A, Smith L, Lapointe SL (1999) Recent advances in cassava pest management. Annu Rev Entomol 44:343–370. doi:10.1146/annurev.ento.44.1.343

    Article  CAS  Google Scholar 

  • Bellotti AC, Arias B (2001) Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot 20:813–823. doi:10.1016/S0261-2194(01)00113-2

    Article  Google Scholar 

  • Best R, Henry G (1992) Cassava: towards the year 2000. In: International Network for Cassava Genetic Resources. In: Report of the First Meeting of the International Network for Cassava Genetics Resources, CIAT, Cali. Colombia. IPGRI, Rome, International Crop Network Series, pp. 3–11

    Google Scholar 

  • Bilen S (2010) Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils. African J Microbiol Res 4:2418–2425

    CAS  Google Scholar 

  • Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR (2010) Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry 71:1940–1951. doi:10.1016/j.phytochem.2010.09.001

    Article  CAS  Google Scholar 

  • Braide O, Adetoro S (2013) Cassava flour as a resin printing paste for textile patterns, Abeokuta, Nigeria. Transnatl J Sci Technol 3:15–29

    Google Scholar 

  • Burns A, Gleadow R, Cliff J et al (2010) Cassava: the drought, war and famine crop in a changing world. Sustainability 2:3572–3607. doi:10.3390/su2113572

    Article  Google Scholar 

  • Burns AE, Bradbury JH, Cavagnaro TR, Gleadow RM (2012) Total cyanide content of cassava food products in Australia. J Food Compos Anal 25:79–82. doi:10.1016/j.jfca.2011.06.005

    Article  CAS  Google Scholar 

  • Cańigueral S, Vanaclocha B (2010) Revista de Fitoterapia: editorial. Rev Fitoter 10:103. doi:10.1002/jsfa

    Google Scholar 

  • Carlsson L, Mlingi N, Juma a et al (1999) Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge. Food Chem Toxicol 37:307–312. doi:10.1016/s0278-6915(99)00015-0

    Article  CAS  Google Scholar 

  • Ceballos H, Iglesias C a, Pérez JC, Dixona GO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516. doi:10.1007/s11103-004-5010-5

    Article  CAS  Google Scholar 

  • Chukwuma C (1995) A comparative study of cadmium, lead, zinc, pH, and bulk density from the Enyigba lead and zinc mine in two different seasons. Ecotoxicol Environ Saf 31:246–249. doi:10.1006/eesa.1995.1070

    Article  CAS  Google Scholar 

  • Clinard F, Delefortrie A, Bellec S et al (2015) Enquête de pratiques agricoles et de consommation alimentaire dans les jardins ouvriers de l’agglomération de Belfort (Franche-Comté). Environnement, Risques & Santé 14:56–71. doi:10.1684/ers.2014.0754

    Google Scholar 

  • Cock JH (1985) Cassava: new potential for a neglected crop. IADS devel. Westview Press

  • Conceicao AJ da . (1979) A mandioca., 3rd edn. EMBRAPA/BNB/BRASCAN NORDESTE, Texas

  • Cui YJ, Zhu YG, Zhai RH et al (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. doi:10.1016/j.envint.2004.01.003

    Article  CAS  Google Scholar 

  • Dai D, Hu Z, Pu G et al (2006) Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers Manag 47:1686–1699. doi:10.1016/j.enconman.2005.10.019

    Article  CAS  Google Scholar 

  • Demir TA, Işikli B, Urer SM et al (2005) Nickel exposure and its effects. Biometals 18:7–13. doi:10.1007/s10534-004-1209-9

    Article  CAS  Google Scholar 

  • Dhas PK, Chitra P, Jayakumar S, Mary AR (2011) Study of the effects of hydrogen cyanide exposure in cassava workers. Indian J Occup Environ Med 15:133–136. doi:10.4103/0019-5278.93204

    Article  Google Scholar 

  • Dórea JG (2004) Cassava cyanogens and fish mercury are high but safely consumed in the diet of native Amazonians. Ecotoxicol Environ Saf 57:248–256. doi:10.1016/j.ecoenv.2003.12.008

    Article  Google Scholar 

  • Dumat C, Pierart A, Stockachie L, Borries O, Messina M, Chevalarias F, Cazenave JM, Bertoni G (2015) Socio-scientific strategies for research and formation projects to favor sustainable urban agricultures at the global scale. International Conference on Soils in Urban, Industrial, Traffic, Mining and Military Areas, to be held in Mexico City from Sept 20th till Sept 25th, 2015

  • Edori OS, Ajuru I, Harcourt P (2015) Analysis of some heavy metals (Pb, Cd, Cr, Fe, Zn) in processed cassava flour (garri) sold along the road side of a busy highway. 7:15–19.

  • Ehimwenma O, Tagbo MT (2011) Determination of normal dimension of the spleen by ultrasound in an endemic tropical environment. Niger Med J 52:198–203. doi:10.4103/0300-1652.86141

    Article  Google Scholar 

  • El-Abssay A, Hassanien M (2011) Health risk assessment of workers exposed to heavy metals in Cement Kiln Dust (CDK).

  • El-Sharkawy MA, Hernández ADP, Hershey C (1992) Yield stability of cassava during prolonged mid-season water stress. Exp Agric 28:165–174

    Article  Google Scholar 

  • FAO. 1991. Racines, tubercules, plantains et bananes: dans la nutrition humaine.

  • Goix S, Mombo S, Schreck E et al (2015) Field isotopic study of lead fate and compartmentalization in earthworm–soil–metal particle systems for highly polluted soil near Pb recycling factory. Chemosphere 138:10–17. doi:10.1016/j.chemosphere.2015.05.010

    Article  CAS  Google Scholar 

  • Gomez G, Valdivieso M (1984) Cassava for animal feeding: effect of variety and plant age on production of leaves and roots. Anim Feed Sci Technol 11:49–55. doi:10.1016/0377-8401(84)90053-1

    Article  Google Scholar 

  • González AG, Mombo S, Leflaive J et al (2015) Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res Int 22:8412–8424. doi:10.1007/s11356-014-3978-1

    Article  Google Scholar 

  • Guédé SS (2013) Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal. Int J Nutr Food Sci 2:225. doi:10.11648/j.ijnfs.20130205.12

  • Hart A, Oboh C, Barimalaa I, Sokari T (2005) Concentrations of trace metals (lead, iron, copper and zinc) in crops harvested in some oil prospecting locations in rivers state, Nigeria

  • Hindy KT, Abdel Shafy HI, Farag SA (1990) The role of the cement industry in the contamination of air, water, soil and plant with vanadium in Cairo. Environ Pollut 66:195–205. doi:10.1016/0269-7491(90)90001-S

    Article  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267. doi:10.1016/S0144-8617(00)00260-5

    Article  CAS  Google Scholar 

  • Horsfall M, Abia a a, Spiff a I (2006) Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol 97:283–291. doi:10.1016/j.biortech.2005.02.016

    Article  CAS  Google Scholar 

  • Huang J, Tichit M, Poulot M et al (2015) Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J Environ Manag 149:138–147. doi:10.1016/j.jenvman.2014.10.020

    Article  Google Scholar 

  • Idodo-Umech G, Ogbeibu A (2010) Bioaccumulation of the heavy metals in cassava tubers and plantain fruits grown in soils impacted with petroleum and non-petroleum activities. Res J Environ Sci 4:33. doi:10.3923/rjes.2010.33.41

    Article  Google Scholar 

  • IFAD; FAO (2005) A review of cassava in Africa with country case studies on Nigeria, Ghana, the United Republic of Tanzania, Uganda and Benin. Agric Consum Prot 357

  • Igbinosa EO (2015) Effect of cassava mill effluent on biological activity of soil microbial community. Environ Monit Assess 187:418. doi:10.1007/s10661-015-4651-y

    Article  Google Scholar 

  • Isabirye M, Ruysschaert G, Van linden L et al (2007) Soil losses due to cassava and sweet potato harvesting: a case study from low input traditional agriculture. Soil Tillage Res 92:96–103. doi:10.1016/j.still.2006.01.013

    Article  Google Scholar 

  • Islam AKMS, Edwards DG, Asher CJ (1980) pH optima for crop growth. Plant Soil 54:339–357. doi:10.1007/BF02181830

    Article  Google Scholar 

  • Iwata K, Saito H, Moriyama M, Nakano A (1992) Follow up study of renal tubular dysfunction and mortality in residents of an area polluted with cadmium. Br J Ind Med 49:736–737

    CAS  Google Scholar 

  • Jakrawatana N, Pingmuangleka P, Gheewala SH (2015) Material flow management and cleaner production of cassava processing for future food, feed and fuel in Thailand. J Clean Prod:1–9. doi:10.1016/j.jclepro.2015.06.139

  • Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47:155–162. doi:10.1016/S0031-9422(97)00425-1

    Article  CAS  Google Scholar 

  • Kalafatoğlu E, Örs N, Özdemir SS, Munlafalioğlu I (2001) Trace element emissions from some cement plants in Turkey. Water Air Soil Pollut 129:91–100. doi:10.1023/A:1010371019712

    Article  Google Scholar 

  • Kalagbor IA, Opusunju K (2015) A comparison study of dry and wet ashing methods used for the assessment of concentration of five heavy metals in three vegetables from Rivers State, Nigeria. Int Res J Public Environ Heal 2:16–22

    Google Scholar 

  • Kamalu BP (1995) The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Int J Food Sci Nutr 46:65–93. doi:10.3109/09637489509003387

    Article  CAS  Google Scholar 

  • Keating BA, Evenson JP (1979) Effect of soil temperature on sprouting and sprout elongation of stem cuttings of cassava (Manihot esculenta Crantz.). F Crop Res 2:241–251. doi:10.1016/0378-4290(79)90026-1

    Article  Google Scholar 

  • Kolind-Hansen L, Brimer L (2010) The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark—a chemical food safety issue. J Sci Food Agric 90:252–256. doi:10.1002/jsfa.3804

    Article  CAS  Google Scholar 

  • Kříbek B, Majer V, Knésl I et al (2014) Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J African Earth Sci 99:713–723. doi:10.1016/j.jafrearsci.2014.02.009

    Article  Google Scholar 

  • Latif S, Müller J (2015) Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol. doi:10.1016/j.tifs.2015.04.006

    Google Scholar 

  • Leveque T, Capowiez Y, Schreck E et al (2014) Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ Pollut 191:199–206. doi:10.1016/j.envpol.2014.04.005

    Article  CAS  Google Scholar 

  • Li H, Liu Y, Gao X, Li X (2015) Preparation and characterization of cassava starch-based adsorbents for separating of azeotropic ethanol-water in biofuels ethanol production. J Chem Technol Biotechnol n/a–n/a. doi:10.1002/jctb.4666

    Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, et al. (2009) Sustainable agriculture. Springer Netherlands, Dordrecht

  • Mitchell RG, Spliethoff HM, Ribaudo LN et al (2014) Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions. Environ Pollut 187:162–169. doi:10.1016/j.envpol.2014.01.007

    Article  CAS  Google Scholar 

  • Mombo S, Foucault Y, Deola F et al (2015) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments:1–11. doi:10.1007/s11368-015-1069-7

  • Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194. doi:10.1111/j.1541-4337.2009.00077.x

    Article  CAS  Google Scholar 

  • Mombo S, Schreck E, Dumat C, Laplanche C, Pierart A, Longchamp M, Besson P, Castrec-Rouelle M (2016) Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environ Geochem Health 38(3):869–883

  • Mortureux M (2012) Avis de l’ Agence nationale de sécurité sanitaire de l’ alimentation, de l’ environnement et du travail. In: Maisons-Alfort (ed) Maisons-Alfort. 25/06/2012, France, pp 1–17

  • Moyo C, Benesi I, Sandifolo V, Teri J (1998) Current status of cassava and sweetpotato production and utilization in Malawi.

  • Nambisan B (2011) Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food Chem Toxicol 49:690–693. doi:10.1016/j.fct.2010.10.035

  • Nassar N, Dorea JG (1982) Protein content of cassava cultivars and its hybrid with wild Manihot species. 32:6–8.

  • Nassar NMA (1978) Conservation of the genetic resources of cassava (Manihot esculenta): determination of wild species localities with emphasis on probable origin. Econ Bot 32:311–320. doi:10.1007/BF02864705

    Article  Google Scholar 

  • Ngudi DD, Kuo YH, Lambein F (2002) Food safety and amino acid balance in processed cassava “Cossettes.”. J Agric Food Chem 50:3042–3049. doi:10.1021/jf011441k

    Article  CAS  Google Scholar 

  • Nhassico D, Muquingue H, Cliff J et al (2008) Rising African cassava production, diseases due to high cyanide intake and control measures. J Sci Food Agric 88:2043–2049. doi:10.1002/jsfa.3337

    Article  CAS  Google Scholar 

  • Nkwocha EE, Pat-Mbano E, Tony-Njoku N (2011) Assessment of heavy metal concentration in food crops grown around Etelebou oil flow station in Bayelsa. Int J Sci Nat 2:665–670

    CAS  Google Scholar 

  • Ntow WJ, Gijzen HJ, Kelderman P, Drechsel P (2006) Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci 62:356–365. doi:10.1002/ps.1178

    Article  CAS  Google Scholar 

  • Oboh G, Akindahunsi AA (2003) Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisae solid media fermentation. Food Chem 82:599–602. doi:10.1016/S0308-8146(03)00016-5

    Article  CAS  Google Scholar 

  • OECD, 2016. Chapter three of the “Safety assessment of transgenic organisms in the environment: OECD consensus documents”, volume 6 © OECD 2016.

  • Oduwaye O a, Ojo DK, Mkumbira J et al (2014) Genetic assessment of 23 cassava, Manihot esculenta Crantz. Genotypes at Two Agro-Climatic Zones in Nigeria Plant Breed Seed Sci doi. doi:10.2478/v10129-011-0073-3

    Google Scholar 

  • Okorie A, Entwistle J, Dean JR (2012) Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 86:460–467. doi:10.1016/j.chemosphere.2011.09.047

    Article  CAS  Google Scholar 

  • Oliver MA (2008) Soil and human health: a review. Eur J Soil Sci 48:573–592. doi:10.1111/j.1365-2389.1997.tb00558.x

    Article  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A 96:5586–5591. doi:10.1073/pnas.96.10.5586

    Article  CAS  Google Scholar 

  • Onabolu a O, Oluwole OS, Bokanga M, Rosling H (2001) Ecological variation of intake of cassava food and dietary cyanide load in Nigerian communities. Public Health Nutr 4:871–876. doi:10.1079/PHN2001127

    CAS  Google Scholar 

  • Onyedika GO, Nwosu GU (2008) Lead, zinc and cadmium in root crops from mineralized galena-sphalerite mining areas and environment. Pakistan J Nutr 7:418–420. doi:10.3923/pjn.2008.418.420

    Article  CAS  Google Scholar 

  • Oshunsanya SO (2016) Alternative method of reducing soil loss due to harvesting of sweet potato: a case study of low input agriculture in Nigeria. Soil Tillage Res 158:49–56. doi:10.1016/j.still.2015.11.007

    Article  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. doi:10.1007/s11270-007-9401-5

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P et al (2000) Biotechnological potential of agro- -industrial residues: II cassava bagasse. Bioresour Technol 74:81–87. doi:10.1016/S0960-8524(99)00143-1

    Article  CAS  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234. doi:10.1016/j.jhazmat.2015.02.011

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C et al (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. doi:10.1007/978-1-4419-9860-6_4

    CAS  Google Scholar 

  • Ryser P, Sauder WR (2006) Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environ Pollut 140:52–61. doi:10.1016/j.envpol.2005.06.026

    Article  CAS  Google Scholar 

  • Sajid L, Joachim M (2014) Cassava—how to explore the “all-sufficient.” In: the International Journal for Rural Development. pp 30–31

  • Sauer CO (1952) Agricultural origins and dispersals, American G. American Geographical Society., New York

  • Schmidt C (1951) A mandioca, contribuição para o conhecimento de sua origem.

  • Schreck E, Foucault Y, Geret F et al (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere 85:1555–1562. doi:10.1016/j.chemosphere.2011.07.059

    Article  CAS  Google Scholar 

  • Schuhmacher M, Bocio A, Agramunt MC et al (2002) PCDD/F and metal concentrations in soil and herbage samples collected in the vicinity of a cement plant. Chemosphere 48:209–217. doi:10.1016/S0045-6535(02)00042-5

    Article  CAS  Google Scholar 

  • Scott GJ, Rosegrant MW, Ringler C (2000) Roots and tubers for the 21st century (brief). The 2020 Vision, International Food Policy Research Institute (IFPRI), 2033 K Street, N.W., Washington, DC 20006-1002, USA/ifpri-info@cgiar.org; Centro Internacional de la Papa (CIP), Apartado 1558, Lima 12, Peru

  • Shahid M, Dumat C, Pourrut B et al (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454. doi:10.1134/S1021443715040159

    Article  CAS  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127. doi:10.1007/978-1-4614-4448-0_2

    CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G (2015b) Heavy metal stress and crop productivity. Crop Prod Glob Environ Issues:1–25. doi:10.1007/978-3-319-23162-4_1

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219-220

  • Shahid M, Pinelli E, Pourrut B et al (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84. doi:10.1016/j.ecoenv.2010.08.037

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591. doi:10.1016/j.fct.2008.12.016

    Article  CAS  Google Scholar 

  • Simate GS, Ndlovu S (2014) The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J Ind Eng Chem 21:635–643. doi:10.1016/j.jiec.2014.03.031

    Article  Google Scholar 

  • Soccol CR (1996) Biotechnology products from cassava root by solid state fermentation. J Sci Ind Res 55:358–364

    CAS  Google Scholar 

  • Souza-Arroyo V, Martínez-Flores K, Bucio-Ortiz L et al (2012) Liver and cadmium toxicity. Drug Metab Toxicol S5:001. doi:10.4172/2157-7609.S5-001

    Google Scholar 

  • Srinivas T (2007) Industrial demand for cassava starch in India. Sect Soc Sci Cent Tuber Crop Res Inst 59:477–481. doi:10.1002/star.200700657

    CAS  Google Scholar 

  • Tonukari NJ, Ezedom T, Enuma CC et al (2015) White gold: cassava as an industrial base. Am J Plant Sci:972–979

  • Tsegai D, Kormawa P (2002) Witzenhausen, 9–11 October 2002 Conference on International Agricultural Research for Development Determinants of urban households ’ demand for cassava and cassava products in Kaduna, northern Nigeria : the application of AIDS model. 9–11.

  • Uzu G, Schreck E, Xiong T et al (2014) Urban market gardening in Africa: foliar uptake of metal(loid)s and their bioaccessibility in vegetables. Implications in Terms of Health Risks. doi:10.1007/s11270-014-2185-5

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y et al (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185. doi:10.1016/j.envpol.2008.09.053

    Article  CAS  Google Scholar 

  • Valko M, Jomova K, Rhodes CJ, et al. (2015) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.

  • Voko DRBI, Zeze A (2013) Impact Des Proprietes Physicochimiques Des Sols De Culture Du Manioc Sur L ’ Abondance Et La Diversite Des Communautes De Champignons Mycorhiziens À Arbuscules Dans La Zone Agroecologique D ’ Azaguie. Sud-Est De La Côte D ’ Ivoire 25:251–264

    Google Scholar 

  • White WLB (1998) Cyanogenesis in cassava. The role of hydroxynitrile lyase in root cyanide production. Plant Physiol 116:1219–1225. doi:10.1104/pp.116.4.1219

    Article  CAS  Google Scholar 

  • Xiong T, Dumat C, Pierart A et al (2016) Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas. South China Environ Geochem Health:1–19. doi:10.1007/s10653-016-9796-2

  • Xiong T, Leveque T, Austruy A, et al. (2014a) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 897–909. doi: 10.1007/s10653–014–9607-6

  • Xiong T, Leveque T, Shahid M et al (2014c) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600. doi:10.2134/jeq2013.11.0469

    Article  Google Scholar 

  • Xiong T-T, Leveque T, Austruy A et al (2014b) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36:897–909. doi:10.1007/s10653-014-9607-6

    Article  CAS  Google Scholar 

  • Yaninek JS, Schulthess F (1993) Developing an environmentally sound plant protection for cassava in Africa. Agric Ecosyst Environ 46:305–324. doi:10.1016/0167-8809(93)90032-K

    Article  Google Scholar 

  • Yu S, Tao J (2009) Simulation based life cycle assessment of airborne emissions of biomass-based ethanol products from different feedstock planting areas in China. J Clean Prod 17:501–506. doi:10.1016/j.jclepro.2008.08.022

    Article  CAS  Google Scholar 

  • Zhang C, Han W, Jing X et al (2003) Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sust Energ Rev 7:353–366. doi:10.1016/S1364-0321(03)00057-1

    Article  CAS  Google Scholar 

  • Zhu W, Lestander TA, Orberg H et al (2015) Cassava stems: a new resource to increase food and fuel production. GCB Bioenergy 7:72–83. doi:10.1111/gcbb.12112

    Article  CAS  Google Scholar 

  • Ziska LH, Runion GB, Tomecek M et al (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503–1508. doi:10.1016/j.biombioe.2009.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from Gabon through “Agence Nationale des Bourses du Gabon” (ANBG) for Mombo PhD funding. The STCM Company is acknowledged for its financial and technical support to the thesis of Mombo S. The authors thank Leigh Gebbie for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dumat.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombo, S., Dumat, C., Shahid, M. et al. A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption. Environ Sci Pollut Res 24, 5207–5221 (2017). https://doi.org/10.1007/s11356-016-8190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8190-z

Keywords

Navigation