Skip to main content

Advertisement

Log in

Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Road dusts and agricultural soil samples were collected from eight sites close to steel mills, chemical plants, and municipal solid waste incinerator in suburban Shanghai. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (US EPA) priority controlled list were analyzed quantitatively using GC-MS. The total PAH concentrations ranged from 0.79 to 6.2 μg g−1 in road dust samples with a mean value of 2.38 μg g−1 and 0.26 to 0.54 μg g−1 in agricultural soils with an average of 0.36 μg g−1. The most abundant individual PAHs were phenanthrene, fluoranthene, pyrene, chrysene, and benzo(b)fluoranthene in dust samples and phenanthrene, fluoranthene, chrysene, and benzo(b)fluoranthene, benzo (k) fluoranthene in soil samples. Dominant compounds were four-ring and five- to six-ring PAHs, which accounted for 41.5 and 31.5 % in dusts and 33.9 and 41.1 % in soils. The spatial distribution of PAHs in dusts and soils was consistent. The wind direction could affect the spatial distribution of PAHs. Organic matter contents were found to be significantly positively correlated with PAH concentrations in both dusts and soils while grain size of particles had no correlation with PAH concentrations and could not significantly influence the distribution of PAH concentrations. PAH isomer ratios showed that combustion of grass, wood, and coal was important sources of PAHs in road dusts and agricultural soils. Toxic equivalent concentrations indicated seven kinds of carcinogenetic PAHs were major toxic equivalent concentration (TEQ) contributors, accounting for 98 % of TEQ, in the road dusts and agricultural soils. Incremental lifetime cancer risk (ILCR) estimation results showed that the PAHs in the dusts and soils had potential cancer risk for both children and adults only by direct ingestion exposure. The TEQ and ILCR values of PAHs in road dusts were much higher than those in soils, which suggested that PAHs in road dusts could be an important source of PAHs in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amodio M, de Gennaro G, Di Gilio A et al (2014) Monitoring of the deposition of PAHs and metals produced by a steel plant in Taranto (Italy). Adv Meteorol 2014

  • Boonyatumanond R, Murakami M, Wattayakorn G et al (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci Total Environ 384(1):420–432

    Article  CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J et al (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58(1):85–97

    Article  CAS  Google Scholar 

  • Camacho-Ibar VF, McEvoy J (1996) Total PCBs in Liverpool bay sediments. Mar Environ Res 41(3):241–263

    Article  CAS  Google Scholar 

  • Chiang KC, Chio CP, Chiang YH et al (2009) Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater 166(2):676–685

    Article  CAS  Google Scholar 

  • Clemons JH, Allan LM, Marvin CH et al (1998) Evidence of estrogen-and TCDD-like activities in crude and fractionated extracts of PM10 air particulate material using in vitro gene expression assays. Environ Sci technol 32(12):1853–1860

    Article  CAS  Google Scholar 

  • Colombo JC, Cappelletti N, Lasci J et al (2006) Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata Estuary, Argentina. Environ Sci Technol 40(3):734–740

    Article  CAS  Google Scholar 

  • Cristale J, Silva FS, Zocolo GJ et al (2012) Influence of sugarcane burning on indoor/outdoor PAH air pollution in Brazil. Environ Pollut 169(15):210–216

    Article  CAS  Google Scholar 

  • Crnković D, Ristić M, Jovanović A et al (2007) Levels of PAHs in the soils of Belgrade and its environs. Environ Monit Assess 125(1–3):75–83

    Article  Google Scholar 

  • Culotta L, Melati MR, Orecchio S (2002) The use of leaves of Rosmarinus officinalis L. as samplers for polycyclic aromatic hydrocarbons. Assessment of air quality in the area of Palermo. Ann Chim 92(9):837–845

    CAS  Google Scholar 

  • Duan Y, Shen G, Tao S et al (2015) Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere 127:64–69

    Article  CAS  Google Scholar 

  • Fang J, Jiang Y, Yan XP et al (2005) Selective quantification of trace palladium in road dusts and roadside soils by displacement solid-phase extraction online coupled with electrothermal atomic absorption spectrometry. Environ Sci Technol 39(1):288–292

    Article  CAS  Google Scholar 

  • Haugland T, Ottesen RT, Volden T (2008) Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway. Environ Pollut 153(2):266–272

    Article  CAS  Google Scholar 

  • Jiang Y, Hu X, Yves UJ et al (2014) Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol Environ Saf 106:11–18

    Article  CAS  Google Scholar 

  • Jiao W, Lu Y, Li J et al (2009) Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China. Environ Monit Assess 158(1–4):581–592

    Article  CAS  Google Scholar 

  • Kong S, Xiao D, Bai Z et al (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China. J Hazard Mater 183(1–3):70–80

    Article  CAS  Google Scholar 

  • Kumar B, Verma VK, Kumar S et al (2013) Probabilistic health risk assessment of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from a tropical city of India. J Environ Sci Health A 48(10):1253–1263

    Article  CAS  Google Scholar 

  • Kwon HO, Choi SD (2014) Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci Total Environ 470:1494–1501

    Article  Google Scholar 

  • Liao CM, Chiang KC (2006) Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 63(9):1610–1619

    Article  CAS  Google Scholar 

  • Liu M, Cheng SB, Ou DN et al (2007) Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmos Environ 41(38):8785–8795

    Article  CAS  Google Scholar 

  • Maertens RM, Gagné RW, Douglas GR et al (2008) Mutagenic and carcinogenic hazards of settled house dust. II: Salmonella mutagenicity. Environ Sci Technol 42(5):1754–1760

    Article  CAS  Google Scholar 

  • Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the greater area of Athens, Greece. Chemosphere 59(5):593–604

    Article  CAS  Google Scholar 

  • Martuzevicius D, Kliucininkas L, Prasauskas T et al (2011) Resuspension of particulate matter and PAHs from street dust. Atmos Environ 45(2):310–317

    Article  CAS  Google Scholar 

  • Means JC, Wood SG, Hassett JJ et al (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14(12):1524–1528

    Article  CAS  Google Scholar 

  • Meza-Figueroa D, O-Villanueva MDL, Parra MLDL (2007) Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ 41(2):276–288

    Article  CAS  Google Scholar 

  • Mostafa AR, Hegazi AH, El-Gayar MS et al (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel 88(1):95–104

    Article  CAS  Google Scholar 

  • Murakami M, Nakajima F, Furumai H (2005) Size-and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere 61(6):783–791

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Sparks DL (ed.) Methods of soil analysis. Part 3. Chemical methods. 2nd edn. Madison: Soil Science Society of America and American Society of Agronomy 539–579

  • Nguyen TC, Loganathan P, Nguyen TV et al (2014) Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol Environ Saf 104:339–348

    Article  CAS  Google Scholar 

  • Nisbet ICT, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300

    Article  CAS  Google Scholar 

  • Orecchio S, Papuzza V (2009) Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. J Hazard Mater 164(2):876–883

    Article  CAS  Google Scholar 

  • Orecchio S, Ciotti VP, Culotta L (2009) Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: analytical method by GC–MS, profile, levels and sources. Food Chem Toxicol 47(4):819–826

    Article  CAS  Google Scholar 

  • Orecchio S, Gianguzza A, Culotta L (2008) Absorption of polycyclic aromatic hydrocarbons by Pinus bark: analytical method and use for environmental pollution monitoring in the Palermo area (Sicily, Italy). Environ Res 107(3):371–379

    Article  CAS  Google Scholar 

  • Orecchio S (2010) Contamination from polycyclic aromatic hydrocarbons (PAHs) in the soil of a botanic garden localized next to a former manufacturing gas plant in Palermo (Italy). J Hazard Mater 180(1):590–601

    Article  CAS  Google Scholar 

  • Ping LF, Luo YM, Zhang HB et al (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, East China. Environ Pollut 147(2):358–365

    Article  CAS  Google Scholar 

  • Pufulete M, Battershill J, Boobis A et al (2004) Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective. Regul Toxicol Pharmacol 40(1):54–66

    Article  CAS  Google Scholar 

  • Rachwał M, Magiera T, Wawer M (2015) Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere

  • Sheu HL, Lee WJ, Tsai JH et al (1996) Particle size distribution of polycyclic aromatic hydrocarbons in the ambient air of a traffic intersection. J Environ Science Health A 31(6):1293–1316

    Google Scholar 

  • Soltani N, Keshavarzi B, Moore F et al (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Szabová E, Zeljenková D, Nesčáková E et al (2008) Polycyclic aromatic hydrocarbons and occupational risk factor. Reprod Toxicol 26(1):74

    Article  Google Scholar 

  • Tao S, Cui YH, Xu FL et al (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320(1):11–24

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • US EPA. Risk assessment guidance for superfund, volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals).OSWER; 1991[9285.7-01B.EPA/540/R-92/003].

  • US EPA. Benzo [a] pyrene (BaP) (CASRN 50–32–8); 1994 [from http://www.epa.gov/ncea/iris/subst/0136.htm].

  • US EPA. Supplemental guidance for developing soil screening levels for superfund sites. OSWER; 2001 [9355.4–24].

  • Vasilakos C, Levi N, Maggos T et al (2007) Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J Hazard Mater 140(1):45–51

    Article  CAS  Google Scholar 

  • Wang W, Huang M, Kang Y et al (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409(21):4519–4527

    Article  CAS  Google Scholar 

  • Wang XT, Chen L, Wang XK et al (2015) Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China. Chemosphere 119:1224–1232

    Article  CAS  Google Scholar 

  • Wei C, Han Y, Bandowe BAM et al (2015) Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, Central China. Sci Total Environ 505:814–822

    Article  CAS  Google Scholar 

  • Yang HH, Lai SO, Hsieh LT et al (2002) Profiles of PAH emission from steel and iron industries. Chemosphere 48(10):1061–1074

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (NSFC) (Grant Nos. 41271472), Natural science fund project of Shanghai (Grant Nos. 12ZR1409000), Key projects of Science and Technology Commission of Shanghai Municipality (Grant Nos. 12231201900), and large instruments and equipment open fund projects of East China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjuan Bi.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Bi, C., Guo, X. et al. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China. Environ Sci Pollut Res 24, 605–615 (2017). https://doi.org/10.1007/s11356-016-7818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7818-3

Keywords

Navigation