Skip to main content
Log in

Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong WA, Black BA, Grant DW (1960) The radiolysis of aqueous calcium benzoate and benzoic acid solutions. J Phys Chem 64(10):1415–1419. doi:10.1021/j100839a013

    Article  CAS  Google Scholar 

  • Berg, A., Navarrete, P., Olave, L., 15th European Biomass Conference & Exhibition, Berlin, Germany, p. p.2198 (2007).

  • Bukowska B, Kowalska S (2004) Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicol Lett 152(1):73–84. doi:10.1016/j.toxlet.2004.03.025

    Article  CAS  Google Scholar 

  • Case P, Bizama C, Segura C, Wheeler MC, Berg A, DeSisto W (2014) Pyrolysis of pre-treated tannins obtained from Radiata pine bark. J Anal Appl Pyrolysis 107:250–255. doi:10.1016/j.jaap.2014.03.009

    Article  CAS  Google Scholar 

  • Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology 31(8):2399–2406. doi:10.1021/es9610646

    Article  CAS  Google Scholar 

  • CNE, Unconventional Renewable Energy Project in Chile (2008). The National Energy Commission.

  • Contreras D, Rodriguez J, Basaez L, Freer J, Valenzuela R, Mansilla H, Vanysek P (2011) New insights in the dihydroxybenzenes-driven Fenton reaction: electrochemical study of interaction between dihydroxybenzenes and Fe(III). Water Sci Technol 64(10):2103–2108. doi:10.2166/wst.2011.420

    Article  CAS  Google Scholar 

  • Contreras D, Rodríguez J, Freer J (2006) Veratryl alcohol degradation by a catechol-driven Fenton reaction as lignin oxidation by brown-rot fungi model. International Biodeterioration & Biodegradation 57(1):63–68. doi:10.1016/j.ibiod.2005.11.003

    Article  CAS  Google Scholar 

  • Contreras D, Rodríguez J, Freer J, Schwederski B, Kaim W (2007) Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation. J Biol Inorg Chem 12(7):1055–1061. doi:10.1007/s00775-007-0274-2

    Article  CAS  Google Scholar 

  • Corder Stanley E (1976) Properties and uses of bark as an energy source. Forest research laboratory, Oregon State University. XVI IUFRO World Congress, Oslo, Norway

    Google Scholar 

  • Ensing B, Buda F, Baerends EJ (2003) Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2. The Journal of Physical Chemistry A 107(30):5722–5731. doi:10.1021/jp0267149

    Article  CAS  Google Scholar 

  • INFOR (2010), Update availability of wood residues generated by the primary wood industry. Chilean Forest Institute.

  • Janzen EG (1980). A critical review of spin trapping in biological systems. Free radicals in biology. Vol. 4. Academic Press New York, Chapter 4: 116–154. ISBN: 0–12–566504-0 (v.4)

  • Jensen Jr KA Jr, Ryan ZC, Vanden Wymelenberg A, Cullen D, Hammel KE (2002) An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68(6):2699–2703. doi:10.1128/AEM.68.6.2699-2703.2002

    Article  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446(1):49–54. doi:10.1016/S0014-5793(99)00180-5

    Article  CAS  Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18(6):641–649. doi:10.1039/B101061L

    Article  CAS  Google Scholar 

  • Kristinová V, Mozuraityte R, Storrø I, Rustad T (2009) Antioxidant activity of phenolic acids in lipid oxidation catalyzed by different prooxidants. J Agric Food Chem 57(21):10377–10385. doi:10.1021/jf901072t

    Article  Google Scholar 

  • Lofrano G, Rizzo L, Grassi M, Belgiorno V (2009) Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination 249(2):878–883. doi:10.1016/j.desal.2009.02.068

    Article  CAS  Google Scholar 

  • Louit G, Foley S, Cabillic J, Coffigny H, Taran F, Valleix A, Pin S (2005) The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat Phys Chem 72(2):119–124. doi:10.1016/j.radphyschem.2004.09.007

    Article  CAS  Google Scholar 

  • Matthews RW (1980) The radiation chemistry of the terephthalate dosimeter. Radiat Res 83(1):27–41. doi:10.2307/3575256

    Article  CAS  Google Scholar 

  • Melin V, Henríquez A, Freer J, Contreras D (2015) Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation. Redox Rep 20(2):89–96. doi:10.1179/1351000214Y.0000000119

    Article  CAS  Google Scholar 

  • Mentasti E, Pelizzetti E, Baiocchi C (1976) Interactions of Fe(III) with adrenaline, L-DOPA and other catechol derivatives: electron-exchange kinetics and mechanism in acidic perchlorate media. J Inorg Nucl Chem 38(11):2017–2021. doi:10.1016/0022-1902(76)80460-5

    Article  CAS  Google Scholar 

  • Monrroy M, Baeza J, Freer J, Rodríguez J (2007) Degradation of tribromophenol by wood-decaying fungi and the 1,2-dihydroxybenzene-assisted Fenton reaction. Bioremediation Journal 11(4):195–200. doi:10.1080/10889860701710560

    Article  CAS  Google Scholar 

  • Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084. doi:10.1016/j.chemosphere.2007.02.015

    Article  CAS  Google Scholar 

  • Oviedo C, Contreras D, Freer J, Rodríguez J (2004) Fe(III)-EDTA complex abatement using a catechol driven Fenton reaction combined with a biological treatment. Environ Technol 25(7):801–807. doi:10.1080/09593330.2004.9619371

    Article  CAS  Google Scholar 

  • Packer L, Rimbach G, Virgili F (1999) Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic Biol Med 27(5):704–724. doi:10.1016/S0891-5849(99)00090-8

    Article  CAS  Google Scholar 

  • Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65(2):674–679

    CAS  Google Scholar 

  • Pepino L, Brito P, Jorge FC, Costa RP, Gil MH, Portugal A (2000). Extraction of pine bark tannins in aqueous-organic systems. In 2nd International Conference on Biopolymer Technology, Ischia, Italy p.36.

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. doi:10.1080/10643380500326564

    Article  CAS  Google Scholar 

  • Pizzi A (2008) Tannins: major sources, properties and applications. Monomers, polymers and composites from renewable resources 8:179–199 ISBN: 978-0-08-045316-3

    Article  Google Scholar 

  • Rodríguez J, Contreras D, Parra C, Freer J, Baeza J (2001) Dihydroxybenzenes: driven Fenton reactions. Water Sci Technol 44(5):251–256. doi:10.1007/978-3-642-56777-3_11

    Google Scholar 

  • Rodríguez J, Contreras D, Parra C, Freer J, Baeza J, Durán N (1999) Pulp mill effluent treatment by Fenton-type reactions catalyzed by iron complexes. Water Sci Technol 40(11–12):351–355. doi:10.1016/S0273-1223(99)00738-6

    Article  Google Scholar 

  • Salgado P, Melin V, Contreras D, Moreno Y, Mansilla HD (2013) Fenton reaction driven by iron ligands. J Chil Chem Soc 58(4):2096–2101. doi:10.4067/S0717-97072013000400043

    Article  CAS  Google Scholar 

  • Tondi G, Pizzi A (2009) Tannin-based rigid foams: characterization and modification. Ind Crop Prod 29(2):356–363. doi:10.1016/j.indcrop.2008.07.003

    Article  CAS  Google Scholar 

  • Valenzuela R, Contreras D, Oviedo C, Freer J, Rodriguez J (2008) Copper catechol-driven Fenton reactions and their potential role in wood degradation. International Biodeterioration & Biodegradation 61(4):345–350. doi:10.1016/j.ibiod.2007.10.006

    Article  CAS  Google Scholar 

  • Yamazaki I, Piette LH (1990) ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem 265(23):13589–13594

    CAS  Google Scholar 

  • Yazaki Y, Hillis WE (1977) Polyphenolic extractives of Pinus radiata bark. Holzforschung—International Journal of the Biology, Chemistry, Physics and Technology of Wood 31(1):20–25. doi:10.1515/hfsg.1977.31.1.20

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge FONDECYT (Grant no. 1131101 and 1160100), FONDEQUIP (EQM 140075), INNOVA Chile (Grant no. 14IDL2-30128), and FONDAP Solar Energy Research Center, SERC-Chile (Grant No. 15110019) for financial assistance, and Romina Romero wish to thank the CONICYT PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Contreras.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(GIF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, R., Contreras, D., Segura, C. et al. Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata . Environ Sci Pollut Res 24, 6135–6142 (2017). https://doi.org/10.1007/s11356-016-7532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7532-1

Keywords

Navigation