Skip to main content
Log in

Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Adsorption of the herbicide glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) was investigated on 17 different agricultural soils. Batch equilibration adsorption data are shown by Freundlich adsorption isotherms. Glyphosate adsorption is clearly affected by equilibration concentrations, but the nonlinear AMPA adsorption isotherms indicate saturation of the adsorption sites with increasing equilibrium concentrations. pHCaCl2 (i.e. experimental pH) is the major parameter governing glyphosate and AMPA adsorption in soils. However, considering pHCaCl2 values, available phosphate amount, and amorphous iron and aluminium oxide contents by using a nonlinear multiple regression equation, obtains the most accurate and powerful pedotransfer rule for predicting the adsorption constants for these two molecules. As amorphous iron and aluminium oxide contents in soil are not systematically determined, we also propose a pedotransfer rule with two variables—pHCaCl2 values and available phosphate amount—that remains acceptable for both molecules. Moreover, the use of the commonly measured pHwater or pHKCl values gives less accurate results compared to pHCaCl2 measurements. To our knowledge, this study is the first AMPA adsorption characterization for a significant number of temperate climate soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AFNOR (1995a) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). NF ISO 10694

  • AFNOR (1995b) Soil quality—determination of phosphorus—spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. NF ISO 11263

  • AFNOR (1999) Soil quality—chemical methods—determination of cationic exchange capacity (CEC) and extractible cations. NF X 31–130

  • AFNOR (2003) Soil quality—particle size determination by sedimentation—pipette method. NF X31-10

  • AFNOR (2005) Soil quality—determination of pH. NF ISO 10390

  • Albers C, Banta G, Hansen P, Jacobsen O (2009) The influence of organic matter on sorption and fate of glyphosate in soil—comparing different soils and humic substances. Environ Pollut 157:2865–2870

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Amellal S, Schiavon M (2008) Sorption and leaching of (14)C-glyphosate in agricultural soils. Agron Sustain Dev 28:419–428

    Article  CAS  Google Scholar 

  • Aparicio VC, De Geronimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873

    Article  CAS  Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources—a review. Agric Ecosyst Environ 123:247–260

    Article  CAS  Google Scholar 

  • Autio S, Siimes K, Laitinen P, Ramo S, Oinonen S, Eronen L (2004) Adsorption of sugar beet herbicides to Finnish soils. Chemosphere 55:215–226

    Article  CAS  Google Scholar 

  • Baez EA, Espinoza J, Silva R (2015) Sorption–desorption behaviour of pesticides and their degradation products in volcanic and non-volcanic soils: interpretation of interations through two-way principal compoment analysis. Environ Sci Pollut Res 22:8576–8585

    Article  CAS  Google Scholar 

  • Barja BC, Afonso MD (2005) Aminomethylphosphonic acid and glyphosate adsorption onto goethite: a comparative study. Environ Sci Technol 39:585–592

    Article  CAS  Google Scholar 

  • Bergstrom L, Borjesson E, Stenstrom J (2011) Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J Environ Qual 40:98–108

    Article  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

    Article  CAS  Google Scholar 

  • Candela L, Caballero J, Ronen D (2010) Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions—Barcelona, Spain. Sci Total Environ 408:2509–2516

    Article  CAS  Google Scholar 

  • Cheah UB, Kirkwood RC, Lum KY (1997) Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pestic Sci 50:53–63

    Article  CAS  Google Scholar 

  • Chen Z, He W, Beer M, Megharaj M, Naidu R (2009) Speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts by ion chromatography with inductively coupled plasma mass spectrometry with an octopole reaction system. Talanta 78:852–856

    Article  CAS  Google Scholar 

  • Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30

    Article  CAS  Google Scholar 

  • de Jonge H, de Jonge LW (1999) Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere 39:753–763

    Article  Google Scholar 

  • de Jonge H, de Jonge LW, Jacobsen OH, Yamaguchi T, Moldrup P (2001) Glyphosate sorption in soils of different pH and phosphorus content. Soil Sci 166:230–238

    Article  Google Scholar 

  • Dousset S, Chauvin C, Durlet P, Thévenot M (2004) Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere 57:265–272

    Article  CAS  Google Scholar 

  • Gerritse RG, Beltran J, Hernandez F (1996) Adsorption of atrazine, simazine, and glyphosate in soils of the Gnangara Mound, Western Australia. Aust J Soil Res 34:599–607

    Article  CAS  Google Scholar 

  • Ghafoor A, Jarvis N, Stenström J (2013) Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pestic Manag Sci 69:919–929

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK (2002) Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Miner 37:509–515

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK (2007) Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals. Clay Clay Miner 55:108–114

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK, Bang M (2004a) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–19

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK, Sestoft P (2004b) Modelling the kinetics of the competitive adsorption and desorption of glyphosate and phosphate on goethite and gibbsite and in soils. Environ Sci Technol 38:1718–1722

    Article  CAS  Google Scholar 

  • Glass RL (1987) Adsorption of glyphosate by soils and clay-minerals. J Agric Food Chem 35:497–500

    Article  CAS  Google Scholar 

  • Inoue MH, Oliveira JRRS, Regitano JB, Tormena CA, Constantin J, Tornisielo VL (2010) Sorption–desorption of atrazine and diuron in soils from Southern Brazil. J Environ Sci Health B 41:605–621

    Article  Google Scholar 

  • Kjaer J, Olsen P, Ullum M, Grand R (2005) Leaching of glyphosate and amino-methylphosphonic acid from Danish agricultural field sites. J Environ Qual 34:608–620

  • Kjaer J, Ernsten V, Jacobsen OH, Hansen N, de Jonge LW, Olsen P (2011) Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere 84:471–479

    Article  CAS  Google Scholar 

  • Kodesova R, Kocarek M, Kodes V, Drabek O, Kozak J, Hejtmankova K (2011) Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J Hazard Mater 186:540–550

    Article  CAS  Google Scholar 

  • Kozak J, Vacek O (1996) The mathematical model (BPS) for prediction of pesticide behaviour in soils. Rostlinna Vyroba 42:551–558

    CAS  Google Scholar 

  • Laitinen P, Siimes K, Rämo S, Jauhiainen L, Eronen L, Oinone S, Hartikaninen H (2008) Effects of soil phosphorus on environmental risk assessment of glyphosate and glufosinate-ammonium. J Environ Qual 37:830–838

    Article  CAS  Google Scholar 

  • Landry D, Dousset S, Fournier JC, Andreux F (2005) Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environ Pollut 138:191–200

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855

    Article  CAS  Google Scholar 

  • McConnell JS, Hossner LR (1985) pH-dependent adsorption-isotherms of glyphosate. J Agric Food Chem 33:1075–1078

    Article  CAS  Google Scholar 

  • Mehra OP, Jackon ML (1960) Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Clays Clay Mineral 7:317–327

    Article  Google Scholar 

  • Morillo E, Undabeytia T, Maqueda C, Ramos A (2000) Glyphosate adsorption on soils of different characteristics. Influence of copper addition. Chemosphere 40:103–107

    Article  CAS  Google Scholar 

  • Norgaard T, Moldrup P, Ferre TPA, Olsen P, Rosenbom AE, de Jonge LW (2014) Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period. Vadose Zone Journal 13

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • OECD (2000) Guideline 106—adsorption desorption using a batch equilibrium method

  • Ololade IA, Oladoja NA, Oloye FF, Alomaja F, Akerele DD, Iwaye J, Aikpokpodion P (2014) Sorption of glyphosate on soil components: the roles of metal oxides and organic materials. Soil Sediment Contam 23:571–585

    Article  CAS  Google Scholar 

  • Paradelo M, Norgaard T, Moldrup P, Ferré TPA, Kumari KGID, Arthur E, de Jonge LW (2015) Prediction of the glyphosate sorption coefficient across two loamy agricultural fields. Geoderma 259–260:224–232

    Article  Google Scholar 

  • Piccolo A, Celano G, Arienzo M, Mirabella A (1994) Adsorption and desorption of glyphosate in some European soils. J Environ Sci Health Part B-Pestic Food Contam Agric Wastes 29:1105–1115

    Article  Google Scholar 

  • Rampazzo N, Rampazzo Todorovic G, Mentler A, Blum WEH (2013) Adsorption of glyphosate and aminomethylphosphonic acid in soils. Int Agrophysics 27:203–209

    Article  CAS  Google Scholar 

  • Sheals J, Sjoberg S, Persson P (2002) Adsorption of glyphosate on goethite: molecular characterization of surface complexes. Environ Sci Technol 36:3090–3095

    Article  CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility, and microbial degradation of glyphosate in soil. Weed Sci 23:229–234

    CAS  Google Scholar 

  • Tamm O (1922) Eine Methode sur bestimmung der anarganischen Komponenten des Golkomplex in Boden. Medd Statens skogforsoksanst 19:385–404

    Google Scholar 

  • Tomlin CDS (1997) The Pesticide Manual. The British Crop Protection Council. Farnham, Surrey

    Google Scholar 

  • Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151

    Article  CAS  Google Scholar 

  • Vinther FP, Brinch UC, Elsgaard L, Fredslund L, Iversen BV, Torp S, Jacobsen CS (2008) Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil. J Environ Qual 37:1710–1718

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders J, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kordel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445

    Article  CAS  Google Scholar 

  • Weber J, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere 55:157–166

    Article  CAS  Google Scholar 

  • WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports 103. FAO, Rome

    Google Scholar 

Download references

Acknowledgments

The research was funded by the Rhône-Méditerranée, the Corsica Water Board (Agence de l’Eau RMC) and BRGM within the framework of the PENATH research project. Dr H.M. Kluijver revised and edited the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Baran.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Our study provides the first AMPA adsorption data for temperate climate soils.

• We used nonlinear multiple regression to correlate K f values and soil properties

• Only four variables allow explaining more than 92 % of glyphosate and AMPA adsorption.

• Of these four, pHCaCl2 is the most reliable explanatory variable for both molecules.

• Neither pHwater nor pHKCl are relevant variables for pedotransfer determination.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidoli, P., Baran, N. & Angulo-Jaramillo, R. Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environ Sci Pollut Res 23, 5733–5742 (2016). https://doi.org/10.1007/s11356-015-5796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5796-5

Keywords

Navigation