Skip to main content

Advertisement

Log in

Human and animal enteric virus in groundwater from deep wells, and recreational and network water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AWWA - American water work association (2006) Water Chlorination/Chloramination Practices and Principles. Manual of Water Supply Practices – M20, 2 ed. Denver.

  • Boffil-Mas S, Albinana-Gimenez N, Clemente-Casares P, Hundesa A, Rodriguez-Manzano J, Allard A, Calvo M, Girones R (2006). Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Applied and Environmental Microbiology 72:7894–7896

  • Borchardt MA, Bertz PD, Spencer SK, Battigelli DA (2003) Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl Environ Microb 9(2):1172–1180

    Article  Google Scholar 

  • Cheremisinoff NP (2002) Handbook of water and wasterwater treatment technologies. Ed. Butterworth Heinemann, Woburn, MA, USA

    Google Scholar 

  • Cuthbert JA (2001) Hepatitis A: old and new. Clin Microbiol Rev 14:38–58

    Article  CAS  Google Scholar 

  • Donia D, Bonanni E, Diaco L, Divizia M (2009) Statistical correlation between enterovirus genome copy numbers and infectious viral particles in wastewater samples. Lett Appl Microbiol 50(2):237–250

    Article  Google Scholar 

  • Espinosa AC, Mazari-Hiriart M, Espinosa R, Maruri-Avidal L, Méndez E, Arias CF (2008) Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res 42(10–11):2618–2628

    Article  CAS  Google Scholar 

  • Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, pp 1917–1974

    Google Scholar 

  • Fong TT, Lipp EK (2005) Enteric viruses of human and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol R 69(2):357–371

    Article  CAS  Google Scholar 

  • Fongaro G, Nascimento MA, Viancelli A, Tonetta D, Petrucio MM, Barardi CR (2012) Surveillance of human viral contamination and physicochemical profiles in a surface water lagoon. Water Sci Technol 66(12):2682–2687

    Article  CAS  Google Scholar 

  • Fongaro G, Nascimento MA, Rigotto C, Ritterbusch G, da Silva AD, Esteves PA, Barardi CR (2013) Evaluation and molecular characterization of human adenovirus in drinking water supplies: viral integrity and viability assays. Virol J 10:1–9

    Article  Google Scholar 

  • Fongaro G, Viancelli A, Magri ME, Elmahdy EM, Biesus LL, Kich JD, Kunz A, Barardi CRM (2014) Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Sci Total Environ 479:277–283

    Article  Google Scholar 

  • Garcia LAT, Viancelli A, Rigotto C, Pilotto MR, Esteves PA, Kunz A, Barardi CRM (2012) Surveillance of human and swine adenovirus, human norovirus and swine circovirus in water samples in Santa Catarina, Brazil. J Water Health 10(3):445–452

    Article  CAS  Google Scholar 

  • Griffin JS, Plummer JD, Long SC (2008) Torque teno virus: animproved indicator for viral pathogens in drinking waters. Virol J 5:112–112

    Article  Google Scholar 

  • Haramoto E, Kitajima M, Katayama H, Ohgaki S (2010) Real-time PCR detection of adenoviruses, polyomaviruses, and torque teno viruses in river water in Japan. Water Res 44(6):1747–1752

    Article  CAS  Google Scholar 

  • Helmi K, Skraber S, Gantzer C, Willame R, Hoffmann L, Cauchie HM (2008) Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages Phi-174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microb 74(7):2079–2088

    Article  CAS  Google Scholar 

  • Hennemann MC, Petrucio MM (2011) Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environ Monit Assess 181(1–4):347–361

    Article  Google Scholar 

  • Hernroth BE, Conden-Hansson AC, Rehnstam-Holm AS, Girones R, Allard AK (2002) Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: the first Scandinavian report. Appl Environ Microb 68(9):4523–4533

    Article  CAS  Google Scholar 

  • Hundesa A, Maluquer de Motes C, Albinana-Gimenez NC, Rodriguez-Manzano J, Bofill-Mas S, Suñen E et al (2009) Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J Virol Methods 158(1–2):130–135

    Article  CAS  Google Scholar 

  • Jothikumar N, Cromeans TL, Sobsey MD, Robertson H (2005) Development and evaluation of a broadly reactive TaqMan assay for rapid detection of hepatitis A virus. Appl Environ Microb 71(6):3359–3363

    Article  CAS  Google Scholar 

  • Kahler AM, Cromeans TL, Roberts JM, Hill VR (2010) Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus. Appl Environ Microb 76(15):5159–5164

    Article  CAS  Google Scholar 

  • Katayama H, Shimasaki A, Ohgaki S (2002) Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Appl Environ Microb 68(3):1033–1039

    Article  CAS  Google Scholar 

  • Keevil CT (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47(5):105–116

    CAS  Google Scholar 

  • Ley V, Higgins J, Fayer R (2002) Bovine enteroviruses as indicators of fecal contamination. Appl Environ Microb 68(7):3455–3461

    Article  CAS  Google Scholar 

  • Maluquer de Motes C, Clemente-Casares P, Hundesa A, Martin M, Girones R (2004) Detection of bovine and porcine adenovirus for tracing the source of fecal contamination. Appl Environ Microbiol 70(3):1448–1454

    Article  Google Scholar 

  • Miranda LAS, Monteggia LO (2007) Sistemas e Processos de Tratamento de Águas de Abastecimento. Porto Alegre: [s.n.].

  • Nascimento MA, Magri ME, Schissi CD, Barardi CRM (2015) Recombinant adenovirus as a model to evaluate the efficiency of free chlorine disinfection in filtered water samples. Virol J 12:30

    Article  Google Scholar 

  • Opriessnig T, Yu S, Gallup JM, Evans RB, Fenaux M, Pallares F, Thacker EL, Brockus CW, Ackermann MR, Thomas P, Meng XJ, Halbur PG (2003) Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus. Vet Pathol 40(5):521–529

    Article  CAS  Google Scholar 

  • Page MA, Shisler JL, Mariñas BJ (2010) Mechanistic aspects of adenovirus serotype 2 inactivation with free chlorine. App Environ Microb 76(9):2946–2954

    Article  CAS  Google Scholar 

  • Page MA, Shisler JL, Mariñas BJ (2009) Kinetics of adenovirus type 2 inactivation with free chlorine. Water Res 43(11):2916–2926

    Article  CAS  Google Scholar 

  • Pintó RM, Costafreda MI, Bosch A (2009) Risk assessment in shellfish-borne outbreaks of hepatitis A. App Environ Microb 75(23):7350–7355

    Article  Google Scholar 

  • Rigotto C, Victoria M, Moresco V, Kolesnikovas CK, Corrêa AA, Souza DSM, Miagostovich MP, Simões CMO, Barardi CRM (2010) Assessment of adenovirus, hepatitis A virus and rotavirus presence in environmental samples in Florianopolis, South Brazil. J App Microbiol 109(6):1979–1987

    Article  CAS  Google Scholar 

  • Rzezutka A, Cook N (2004) Survival of human enteric viruses in the environmental and food. FEMS Microbiol Rev 28(4):441–453

    Article  CAS  Google Scholar 

  • Segalés J, Olvera A, Grau-Roma L, Charreyre C, Nauwynck H, Larsen L et al (2008) PCV-2 genotype definition and nomenclature. Vet Rec 162(26):867–868

    Article  Google Scholar 

  • Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91(3):525–532

    Article  CAS  Google Scholar 

  • Suthar S, Chhimpa V, Singh S (2009) Bacterial contamination in drinking water: a case study in rural areas of northern Rajasthan, India. Environ Monit Assess 159(1–4):43–50

    Article  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Sschleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    Article  CAS  Google Scholar 

  • Thurston-Enriquez JA, Haas CN, Jacangelo J, Gerba CP (2003) Chlorine inactivation of adenovirus type 40 and feline calicivirus. Appl Environ Microb 69(7):3979–3985

    Article  CAS  Google Scholar 

  • Viancelli A, Garcia LAT, Kunz A, Steinmetz R, Esteves PA, Barardi CRM (2011) Detection of circoviruses and porcine adenoviruses in water samples collected from swine manure treatment systems. Res Vet Sci 93(1):538–543

    Article  Google Scholar 

  • Viancelli A, Garcia LAT, SchiochetM KA, Steinmetz R, Ciacci-Zanella JR et al (2012) Culturing and molecular methods to assess the infectivity of porcine circovirus from treated effluent of swine manure. Res Vet Sci 93(3):1520–1524

    Article  CAS  Google Scholar 

  • Zeng SQ, Halkosalo A, Salminen M, Szakal ED, Puustinen L, Vesikari T (2008) One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. J Virol Methods 153(2):238–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislaine Fongaro.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fongaro, G., Padilha, J., Schissi, C.D. et al. Human and animal enteric virus in groundwater from deep wells, and recreational and network water. Environ Sci Pollut Res 22, 20060–20066 (2015). https://doi.org/10.1007/s11356-015-5196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5196-x

Keywords

Navigation