Skip to main content

Advertisement

Log in

Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate seasonal heavy metal accumulation and translocation characteristics of the narrow-leaved cattail (Typha angustifolia L.). Sediment and plant samples were taken seasonally from six different locations identified for this purpose, and Pb, Cr, Cu, Ni, Zn, and Cd concentrations as well as accumulation factor (AF) and translocation factor (TF) values were determined. It was noted that the metal concentrations in the plant roots, rhizomes, and leaves differed seasonally. The metals mainly accumulated in the plant roots, and Zn was the element that accumulated the most in the plant roots, rhizomes, and leaves. The highest Zn concentration was observed to be 56.47 μg g−1 in the rhizome sample from the summer. In all the seasons, the AF value of Cd was observed to be above 1. In addition, the TF value was below 1 for all elements in every season. While the element having lowest uptake and translocation ratio was Cr, and the highest uptake and translocation ratio was found for Cd. The AF and TF values suggest that the plant would be most appropriate for use in phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenlys: new trends and promises. Environ Sci Technol 44:2767–2776. doi:10.1021/es902514d

    Article  Google Scholar 

  • Aksoy A, Duman F, Sezen G (2005) Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis). J Freshw Ecol 20:783–785. doi:10.1080/02705060.2005.9664806

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. doi:10.1016/j

    Article  CAS  Google Scholar 

  • Bah AM, Dai H, Zhao J, Sun H, Cao F, Zhang G, Wu F (2011) Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biol Trace Elem Res 142:77–92. doi:10.1007/s12011-010-8746-6

    Article  CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species, Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130. doi:10.1016/j.ecoenv.2013.07.017

    Article  CAS  Google Scholar 

  • Bonanno G, Giudice RL (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645. doi:10.1016/j.ecolind.2009.11.002

    Article  CAS  Google Scholar 

  • Brankovic S, Pavlovic-Muratspahic D, Topuzovic M, Glisic R, Bankovic D, Stankovic M (2011) Environmental study of some metals on several aquatic macrophytes. Afr J Biotechnol 10:11956–11965. doi:10.5897/AJB10.2655

    CAS  Google Scholar 

  • Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195. doi:10.1016/j.scitotenv.2003.11.023

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queesland, Australia. Chemosphere 48:653–663. doi:10.1016/S0045-6535(02)00164-9

    Article  CAS  Google Scholar 

  • Chandra R, Yadav S (2010) Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecol Eng 36:1277–1284. doi:10.1016/j.ecoleng.2010.06.003

    Article  Google Scholar 

  • Chandra R, Yadav S (2011) Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites communis, Typha angustifolia, Cyperus esculentus. Int J Phytorem 13:580–591. doi:10.1080/15226514.2010.495258

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2007) Metal accumulation in 5 native plants growing on abandoned Cu-tailings ponds. Appl Ecol Environ Res 5:27–35. doi:10.15666/aeer/0501_027035

    Article  Google Scholar 

  • Demirezen Yılmaz D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696. doi:10.1016/j.chemosphere.2004.04.011

    Article  Google Scholar 

  • Drzewiecka K, Borowiak K, Mleczek M, Zawada I, Golınskı P (2010) Cadmium and lead accumulation in two littoral plants of five lakes in Poznan, Poland. Acta Biol Cracov Ser Bot 52:59–68. doi:10.2478/v10182-010-0024-6

    Google Scholar 

  • Duman F (2001) Determination of heavy metal levels of Phragmithes australis and Typha angustifolia growing at Sarimsakli-Karasu and sediment samples. Dissertation, University of Erciyes.

  • Duman F, Urey E, Kar M (2013) Temporal variation of metal concentrations of creek sediment samples. Pol J Environ Stud 22:1335–1339

    CAS  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249. doi:10.1016/j.ecoenv.2013.07.006

    Article  CAS  Google Scholar 

  • Ganjo DGA, Khwakaram AI (2010) Phytoremediation of wastewater using some of aquatic macrophytes as biological purifiers for irrigation purposes. World Acad Sci Eng Technol 4:1409–1432

    Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Tech 8:639–648

    Article  CAS  Google Scholar 

  • Hozhina EI, Khramov AA, Gerasimov PA, Kumarkov AA (2001) Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J Geochem Explor 74:153–162. doi:10.1016/S0375-6742(01)00181-9

    Article  CAS  Google Scholar 

  • Jiang X, Teng A, Xu W, Liu X (2014) Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar Pollut Bull 83:366–375. doi:10.1016/j.marpolbul.2014.03.020

    Article  CAS  Google Scholar 

  • Kim ND, Fergusson JE (1994) Seasonal variations in the concentrations of cadmium, copper, lead and zinc in leaves of the horse chestnut (Aesculus hippocastanum L.). Environ Pollut 86:89–97

    Article  CAS  Google Scholar 

  • Klink A, Wislocka M, Musial M, Krawczyk J (2013) Macro- and trace-elements accumulation in Typha angustifolia L. and Typha latifolia L. organs and their use bioindication. Pol J Environ Stud 22:183–190. doi:10.1016/j.limno.2012.08.012

    CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240. doi:10.1016/S0025-326X(00)00147-8

    Article  CAS  Google Scholar 

  • Majid SN, Khwakaram AI, Rasul GAM, Ahmed ZH (2014) Bioaccumulation, enrichment and translocation factors of some heavy metals in Typha angustifolia and Phragmites australis species growing along Qalyasan Stream in Sulaimani City/IKR. JZS-A 16:93–109

    Google Scholar 

  • Memon AR, Aktopraklıgil D, Özdemir A, Vertıı A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Miloskovic A, Brankovic S, Simic V, Kovacevic S, Cirkovic M, Manojlovic D (2013) The accumulation and distribution of metals in water, sediment, aquatic macrophytes and fishes of the Gruza Reservoir, Serbia. Bull Environ Contam Toxicol 90:563–569. doi:10.1007/s00128-013-0969-8

    Article  CAS  Google Scholar 

  • Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheragi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ Earth Sci 62:639–644. doi:10.1007/s12665-010-0553-z

    Article  CAS  Google Scholar 

  • Prado C, Rosa M, Pagano E, Hilal M, Prado FE (2010) Seasonal variability of physiological and biochemical aspects of chromium accumulation in outdoor-grown Salvinia minima. Chemosphere 81:584–593. doi:10.1016/j.chemosphere.2010.08.033

    Article  CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:764–780. doi:10.1023/A:1025604627496

    Article  Google Scholar 

  • Sasmaz A, Obek E, Hasar H (2008) The accumulation of heavy metals in Typha angustifolia L. grown in a stream carrying secondary effluent. Ecol Eng 33:278–284. doi:10.1016/j.ecoleng.2008.05.006

    Article  Google Scholar 

  • Yadav S, Chandra R (2011) Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environ Earth Sci 62:1235–1243. doi:10.1007/s12665-010-0611-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Duman.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, F., Urey, E. & Koca, F.D. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environ Sci Pollut Res 22, 17886–17896 (2015). https://doi.org/10.1007/s11356-015-4979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4979-4

Keywords

Navigation