Skip to main content
Log in

Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalic acid ester (PAE) pollution to soil can lead to phytotoxicity in plants and potential health risks to human being. Dibutyl phthalate (DBP) as a kind of PAE has a large usage amount and large residues in soil. To analyze antioxidant responses of plants to DBP stress, effects of varying DBP concentrations on cucumber seedlings growth had been investigated. Malonaldehyde (MDA), hydrogen peroxide (H2O2), chlorophyll, proline, glutathione (GSH), and oxidized glutathione (GSSH) contents and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) were studied. The results showed that H2O2 content increased in cucumber seedlings with the increase of DBP concentration. The chlorophyll content in the higher DBP significantly declined compared to the control. In the present study, a disturbance of the GSH redox balance was evidenced by a marked decrease in GSH/GSSG ratio in cucumber seedlings subjected DBP stress. Our results indicated that DBP treatment not only inhibited antioxidant capacity and antioxidant enzyme activity in seedlings’ leaves but might also induce chlorophyll degradation or reduce the synthesis of chlorophyll. Moreover, it could also enhance the accumulation of reactive oxygen species (ROS) which induced membrane lipid peroxidation. DBP also altered the ultrastructure of mesophyll cells, damaged membrane structure of chloroplast and mitochondrion, and increased the number and size of starch grains in chloroplasts reducing the photosynthetic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86(5):546–555

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahamad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Api AM (2001) Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 39(2):97–108

    Article  CAS  Google Scholar 

  • Barhoumi Z, Djebali W, Chaıbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537

    Article  CAS  Google Scholar 

  • Chen JA, Liu H, Qiu Z, Shu W (2008) Analysis of di-n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition. Environ Pollut 156(3):849–853

    Article  CAS  Google Scholar 

  • Colacino JA, Harris TR, Schecter A (2010) Dietary intake is associated with phthalate body burden in a nationally representative sample. Environ Health Perspect 118(7):998

    Article  CAS  Google Scholar 

  • Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ (2006) Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab 291(1):E182–E189

    Article  CAS  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LY, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ Exp Bot 79:1–10

    Article  CAS  Google Scholar 

  • Deng YS, Kong FY, Zhou B, Zhang S, Yue MM, Meng QW (2014) Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco. Plant Physiol Biochem 80:318–327

    Article  CAS  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    Article  CAS  Google Scholar 

  • dos Santos RW, Schmidt ÉC, Bouzon ZL (2013) Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium. Protoplasma 250:297–305

    Article  CAS  Google Scholar 

  • Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, Wolff MS (2010) Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect 118(4):565–571

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6(10):486–492

    Article  CAS  Google Scholar 

  • Fromme H, Gruber L, Schlummer M, Wolz G, Böhmer S, Angerer J, Mayer R, Liebl B, Bolte G (2007) Intake of phthalates and di (2-ethylhexyl) adipate: results of the integrated exposure assessment survey based on duplicate diet samples and biomonitoring data. Environ Int 33(8):1012–1020

    Article  CAS  Google Scholar 

  • Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi SR, Limd YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Hortic 147:42–48

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Gomes MP, Duarte DM, Carneiro MM, Barreto LC, Carvalho M, Soares AM, Guilherme LR, Garcia QS (2013) Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiol Biochem 67:1–6

    Article  CAS  Google Scholar 

  • Gray LE, Ostby J, Furr J, Price M, Veeramachaneni DR, Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58(2):350–365

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2011) Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol 45(8):3788–3794

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  Google Scholar 

  • Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, Hotchkiss AK, Gray LE (2008) A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague–Dawley rat in a cumulative, dose-additive manner. Toxicol Sci 105(1):153–165

    Article  CAS  Google Scholar 

  • Jebara S, Jebara M, Fe L, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    Article  CAS  Google Scholar 

  • Kondo T, Shono T, Suita S (2006) Age-specific effect of phthalate ester on testicular development in rats. J Pediat Surg 41(7):1290–1293

    Article  Google Scholar 

  • Kong S, Ji Y, Liu L, Chen L, Zhao X, Wang J, Bai ZP, Sun Z (2012) Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollut 170:161–168

    Article  CAS  Google Scholar 

  • Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Phys Plant 34(1):75–86

    Article  CAS  Google Scholar 

  • Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361(1):20–29

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  Google Scholar 

  • Lovekamp-Swan T, Davis BJ (2003) Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect 111(2):139

    Article  CAS  Google Scholar 

  • Lyche JL, Gutleb AC, Bergman Å, Eriksen GS, Murk AJ, Ropstad E, Saunders M, Skaare JU (2009) Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health, Part B 12(4):225–249

    Article  CAS  Google Scholar 

  • Ma TT, Christie P, Teng Y, Luo Y (2013) Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis (2-ethylhexyl) phthalate. Environ Sci Pollut Res 20(8):5289–5298

    Article  CAS  Google Scholar 

  • Matés JM, Pérez-Gómez C, de Castro IN, Asenjo M, Márquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34(5):439–458

    Article  Google Scholar 

  • Matsumoto M, Hirata-Koizumi M, Ema M (2008) Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharm 50(1):37–49

    Article  CAS  Google Scholar 

  • Miguel AS, Faure M, Ravanel P, Raveton M (2012) Biological responses of maize (Zea mays) plants exposed to chlorobenzenes. Case study of monochloro-, 1,4-dichloro- and 1,2,4-trichloro-benzenes. Ecotoxicology 21(2):315–324

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mo CH, Cai QY, Li YH, Zeng QY (2008) Occurrence of priority organic pollutants in the fertilizers, China. J Hazard Mater 152(3):1208–1213

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160(2):291–299

    Article  CAS  Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguébel JP, Schmülling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48

    Article  CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    Article  CAS  Google Scholar 

  • Oguntimehin I, Eissa F, Sakugawa H (2010) Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill): fluoranthene mists negatively affected tomato plants. Chemosphere 78(7):877–884

    Article  CAS  Google Scholar 

  • Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, Wang P, Zhang S, Yoshimura M, Hanaoka T, Takahashi K (2006) Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114(11):1643

    CAS  Google Scholar 

  • Pichrtová M, Remias D, Lewis LA, Holzinger A (2013) Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol 65:68–83

    Article  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla VF, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108:87–93

    Article  CAS  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167(5):1159–1169

    Article  CAS  Google Scholar 

  • Rao KM, Raghavendra AS, Reddy KJ (2006) Physiology and molecular biology of stress tolerance in plants. Springer, Amsterdam

    Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9(5):565–572

    Article  CAS  Google Scholar 

  • Sanchez-Pardo B, Ferna’ndez-Pascual M, Zornoza P (2014) Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. J Plant Res 127:119–129

    Article  CAS  Google Scholar 

  • Saçan MT, Oztay F, Bolkent S (2007) Exposure of Dunaliella tertiolecta to lead and aluminum: toxicity and effects on ultrastructure. Biol Trace Elem Res 120:264–272

    Article  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29(1):134–139

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  CAS  Google Scholar 

  • Shah K, Nahakpamb S (2012) Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57:106–113

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exper Bot 57(4):711–726

    Article  CAS  Google Scholar 

  • Sultan C, Balaguer P, Terouanne B, Georget V, Paris F, Jeandel C, Lumbroso S, Nicolas JC (2001) Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation. Mol Cell Endocrinol 178(1):99–105

    Article  CAS  Google Scholar 

  • Sun ZP, Li TL, Liu YL (2011) Effects of elevated CO2 applied to potato roots on the anatomy and ultrastructure of leaves. Biol Plant 55(4):675–680

    Article  CAS  Google Scholar 

  • Tijen D, Ìsmail T (2005) Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance. Environ and Exp Bot 53:247–257

    Article  Google Scholar 

  • Vella NGF, Joss TV, Roberts TH (2012) Chilling-induced ultrastructural changes to mesophyll cells of Arabidopsis grown under short days are almost completely reversible by plant re-warming. Protoplasma 249:1137–1149

    Article  CAS  Google Scholar 

  • Wan S, Kang Y, Wang D, Liu SP (2010) Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agr Water Manag 98(1):105–113

    Article  Google Scholar 

  • Wang SG, Lin XG, Yin R, Hou YL (2003) Effects of di-n-butyl phthalate on mycorrhizal and non-mycorrhizal cowpea plants. Biol Plant 47(4):637–639

    Article  CAS  Google Scholar 

  • Wang X, Lin Q, Wang J, Lu X, Wang G (2013) Effect of wetland reclamation and tillage conversion on accumulation and distribution of phthalate esters residues in soils. Ecol Eng 51:10–15

    Article  Google Scholar 

  • Wei AX, Xu XB (2005) Research on the pollution of phthalate esters compounds in the environment. Tech and Equip for Environ Pollut Control 6:89–93

    CAS  Google Scholar 

  • Wormuth M, Scheringer M, Vollenweider M, Hungerbühler K (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26(3):803–824

    Article  Google Scholar 

  • Yana M, Korshinb GV, Changc HS (2014) Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra. Water Res 50:179–188

    Article  Google Scholar 

  • Zhang YX, Li XL (2003) Toxicity of three organophosphorus pesticides on Hordeum vulgare seedling. J Agro-Environ Sci 22:754–757

    CAS  Google Scholar 

  • Zhang QF, Li YY, Pang CH, Lu CM, Wang BS (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L, Du N, Ma GP, Yang AM, Zhang H, Wang ZG, Song QX (2014) Effects of diethylphthalate and di-(2-ethyl) hexylphthalate on the physiology and ultrastructure of cucumber seedlings. Environ Sci Pollut Res 21(2):1020–1028

    Article  CAS  Google Scholar 

  • Zhou B, Deng YS, Kong FY, Li B, Meng QW (2013) Overexpression of a tomato carotenoid-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco. Plant Physiol Biochem 70:235–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and 863 Development Program of China, project 2012AA101405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Du, N., Wang, L. et al. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Environ Sci Pollut Res 22, 3477–3488 (2015). https://doi.org/10.1007/s11356-014-3524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3524-1

Keywords

Navigation