Skip to main content

Advertisement

Log in

An assessment of endocrine activity in Australian rivers using chemical and in vitro analyses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Studies on endocrine disruption in Australia have mainly focused on wastewater effluents. Limited knowledge exists regarding the relative contribution of different potential sources of endocrine active compounds (EACs) to the aquatic environment (e.g., pesticide run-off, animal farming operations, urban stormwater, industrial inputs). In this study, 73 river sites across mainland Australia were sampled quarterly for 1 year. Concentrations of 14 known EACs including natural and synthetic hormones and industrial compounds were quantified by chemical analysis. EACs were detected in 88 % of samples (250 of 285) with limits of quantification (LOQ) ranging from 0.05 to 20 ng/l. Bisphenol A (BPA; LOQ = 20 ng/l) was the most frequently detected EAC (66 %) and its predicted no-effect concentration (PNEC) was exceeded 24 times. The most common hormone was estrone, detected in 28 % of samples (LOQ = 1 ng/l), and the PNEC was also exceeded 24 times. 17α-Ethinylestradiol (LOQ = 0.05 ng/l) was detected in 10 % of samples at concentrations ranging from 0.05 to 0.17 ng/l. It was detected in many samples with no wastewater influence, and the PNEC was exceeded 13 times. In parallel to the chemical analysis, endocrine activity was assessed using a battery of CALUX bioassays. Estrogenic activity was detected in 19 % (53 of 285) of samples (LOQ = 0.1 ng/l 17β-estradiol equivalent; EEQ). Seven samples exhibited estrogenic activity (1–6.5 ng/l EEQ) greater than the PNEC for 17β-estradiol. Anti-progestagenic activity was detected in 16 % of samples (LOQ = 8 ng/l mifepristone equivalents; MifEQ), but the causative compounds are unknown. With several compounds and endocrine activity exceeding PNEC values, there is potential risk to the Australian freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahel M, Giger W, Schaffner C (1994) Behavior of alkylphenol polyethoxylate surfactants in the aquatic environment: 2. Occurance and transformation in rivers. Water Res 28:1143–1152

    Article  CAS  Google Scholar 

  • Allinson G, Allinson M, Shiraishi F, Salzman SA, Myers JH, Hermon KM, Theodoropoulos T (2008) Androgenic activity of effluent from forty-five municipal waste water treatment plants in Victoria, Australia. Environ Toxicol II 110:293–304

    CAS  Google Scholar 

  • Allinson M, Shiraishi F, Salzman SA, Allinson G (2010) In vitro and immunological assessment of the estrogenic activity and concentrations of 17 beta-estradiol, estrone, and ethinyl estradiol in treated effluent from 45 wastewater treatment plants in Victoria, Australia. Arch Environ Contam Toxicol 58:576–586

    Article  CAS  Google Scholar 

  • Allinson M, Shiraishi F, Kamata R, Kageyama S, Nakajima D, Goto S, Allinson G (2011) A pilot study of the water quality of the Yarra River, Victoria, Australia, using in vitro techniques. Bull Environ Contam Toxicol 87:591–596

    Article  CAS  Google Scholar 

  • Anderson PD, Johnson AC, Pfeiffer D, Caldwell DJ, Hannah R, Mastrocco F, Sumpter JP, Williams RJ (2012) Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters. Environ Toxicol Chem 31:1407–1415

    Article  CAS  Google Scholar 

  • Arditsoglou A, Voutsa D (2008) Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ Sci Pollut Res 15:228–236

    Article  CAS  Google Scholar 

  • Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L (2009) Quantitative–qualitative data acquisition using a benchtop Orbitrapo mass spectrometer. J Am Soc Mass Spectrom 20:1441–1450

    Article  CAS  Google Scholar 

  • Batty J, Lim R (1999) Morphological and reproductive characteristics of male mosquitofish (Gambusia affinis holbrooki) inhabiting sewage-contaminated waters in New South Wales, Australia. Arch Environ Contam Toxicol 36:301–307

    Article  CAS  Google Scholar 

  • Braga O, Smythe GA, Schafer AI, Feltz AJ (2005a) Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ Sci Technol 39:3351–3358

    Article  CAS  Google Scholar 

  • Braga O, Smythe GA, Schafer AI, Feltz AJ (2005b) Steroid estrogens in primary and tertiary wastewater treatment plants. Water Sci Technol 52:273–278

    CAS  Google Scholar 

  • Caldwell DJ, Mastrocco F, Anderson PD, Lange R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17 beta-estradiol, estriol, and 17 alpha-ethinylestradiol. Environ Toxicol Chem 31:1396–1406

    Article  CAS  Google Scholar 

  • Campbell C, Borglin S, Green F, Grayson A, Wozei E, Stringfellow W (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    Article  CAS  Google Scholar 

  • Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28(12):2473–2484

    Article  CAS  Google Scholar 

  • Chapman H (2003) Removal of endocrine disruptors by tertiary treatments and constructed wetlands in subtropical Australia. Water Sci Technol 47:151–156

    CAS  Google Scholar 

  • Chinathamby K, Allinson M, Shiraishi F, Lopata AL, Nugegoda D, Pettigrove V, Allinson G (2013) Screening for potential effects of endocrine-disrupting chemicals in peri-urban creeks and rivers in Melbourne, Australia using mosquitofish and recombinant receptor–reporter gene assays. Environ Sci Pollut Res 20:1831–1841

    Article  CAS  Google Scholar 

  • Cladiere M, Gasperi J, Lorgeoux C, Bonhomme C, Rocher V, Tassin B (2013) Alkylphenolic compounds and bisphenol A contamination within a heavily urbanized area: case study of Paris. Environ Sci Pollut Res 20:2973–2983

    Article  CAS  Google Scholar 

  • Coleman HM, Khan SJ, Watkins G, Stuetz RM (2008) Fate and analysis of endocrine disrupting chemicals in some sewage treatment plants in Australia. Water Sci Technol 58:2187–2194

    Article  CAS  Google Scholar 

  • Doyle CJ, Lim RP (2002) The effect of 17β-estradiol on the gonopodial development and sexual activity of Gambusia holbrooki. Environ Toxicol Chem 21:2719–2724

    Article  CAS  Google Scholar 

  • Doyle CJ, Lim RP (2005) Sexual behavior and impregnation success of adult male mosquitofish following exposure to 17 beta-estradiol. Ecotoxicol Environ Saf 61:392–397

    Article  CAS  Google Scholar 

  • Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park J-H, Kim KW, Inam E, Kim SD (2010) Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 78:286–293

    Article  CAS  Google Scholar 

  • Eganhouse RP, Pontolillo J, Gaines RB, Frysinger GS, Gabriel FLP, Kohler H-PE, Giger W, Barber LB (2009) Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Environ Sci Technol 43:9306–9313

    Article  CAS  Google Scholar 

  • Environment Canada, Health Canada (2008) Screening assessment for the challenge phenol, 4,4′-(1-methylethylidene)bis-(bisphenol A). CAS 80-05-7, Ottawa

  • Fick J, Lindberg RH, Parkkonen J, Arvidsson B, Tysklind M, Larsson DGJ (2010) Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents. Environ Sci Technol 44:2661–2666

    Article  CAS  Google Scholar 

  • Fromme H, Kuchler T, Otto T, Pilz K, Muller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  • Gadd J, Tremblay L, Northcott G (2010) Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents. Environ Pollut 158:730–736

    Article  CAS  Google Scholar 

  • Game C, Gagnon MM, Webb D, Lim R (2006) Endocrine disruption in male mosquitofish (Gambusia holbrooki) inhabiting wetlands in Western Australia. Ecotoxicology 15:665–672

    Article  CAS  Google Scholar 

  • GWRC (2012) Bioanalytical tools to analyse hormonal activity in environmental waters: review of the state-of-the-science. Water Environment Research Foundation (WERF), Alexandria, VA, USA

  • Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after "Wingspread" — environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105(2):235–259

    Article  CAS  Google Scholar 

  • Houtman CJ, Sterk SS, van de Heijning MP, Brouwer A, Stephany RW, van der Burg B, Sonneveld E (2009) Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Anal Chim Acta 637:247–258

    Article  CAS  Google Scholar 

  • Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: evidence for environmentally-induced masculinization. Copeia 4:676–681

    Article  Google Scholar 

  • Jarosova B, Blaha L, Giesy JP, Hilscherova K (2013) What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ Int 64C:98–109

    Google Scholar 

  • Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    Article  CAS  Google Scholar 

  • Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114:32–39

    Article  Google Scholar 

  • Jobling S, Burn RW, Thorpe K, Williams R, Tyler C (2009) Statistical modeling suggests that antiandrogens in effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers. Environ Health Perspect 117:797–802

    Article  CAS  Google Scholar 

  • Jondeau-Cabaton A, Soucasse A, Jamin EL, Creusot N, Grimaldi M, Jouanin I, Ait-Aissa S, Balaguer P, Debrauwer L, Zaiko D (2013) Characterization of endocrine disruptors from a complex matrix using estrogen receptor affinity columns and high performance liquid chromatrography-high resolution mass spectrometry. Environ Sci Pollut Res Int 20(5):2705–2720

    Article  CAS  Google Scholar 

  • Jürgens MD, Holthaus KIE, Johnson AC, Smith JJL, Hetheridge M, Williams RJ (2002) The potential for estradiol and ethinylestradiol degradation in English rivers. Environ Toxicol Chem 21:480–488

    Article  Google Scholar 

  • Khan SJ, Roser DJ, Davies CM, Peters GM, Stuetz RM, Tucker R, Ashbolt NJ (2008) Chemical contaminants in feedlot wastes: concentrations, effects and attenuation. Environ Int 34:839–859

    Article  CAS  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897–8901

    Article  CAS  Google Scholar 

  • Kim YS, Katase T, Horii Y, Yamashita N, Makino M, Uchiyama T, Fujimoto Y, Inoue T (2005) Estrogen equivalent concentration of individual isomer-specific 4-nonylphenol in Ariake sea water, Japan. Mar Pollut Bull 51:850–856

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kostich M, Flick R, Martinson J (2013) Comparing predicted estrogen concentrations with measurements in US waters. Environ Pollut 178:271–277

    Article  CAS  Google Scholar 

  • Kuster M, de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat River basin (Barcelona, Spain). J Hydrol (Amst) 358:112–123

    Article  CAS  Google Scholar 

  • Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg P (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66

    Article  CAS  Google Scholar 

  • Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, De Voogt P, Murk AJ, Van der Burg B (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    Article  CAS  Google Scholar 

  • Leusch FDL, Chapman HF, Körner W, Gooneratne SR, Tremblay LA (2005) Efficacy of an advanced sewage treatment plant in southeast Queensland, Australia, to remove estrogenic chemicals. Environ Sci Technol 39:5781–5786

    Article  CAS  Google Scholar 

  • Leusch FD, Chapman HF, van den Heuvel MR, Tan BL, Gooneratne SR, Tremblay LA (2006a) Bioassay-derived androgenic and estrogenic activity in municipal sewage in Australia and New Zealand. Ecotoxicol Environ Saf 65:403–411

    Article  CAS  Google Scholar 

  • Leusch FDL, Chapman HF, Kay GW, Gooneratne SR, Tremblay LA (2006b) Anal fin morphology and gonadal histopathology in mosquitofish (Gambusia holbrooki) exposed to treated municipal sewage effluent. Arch Environ Contam Toxicol 50:562–574

    Article  CAS  Google Scholar 

  • Leusch FDL, De Jager C, Levi Y, Lim R, Sacher F, Tremblay LA, Wilson VS, Chapman HF (2010) Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters. Environ Sci Technol 44

  • Leusch F, Khan S, Gagnon M, Quayle P, Trinh T, Coleman H, Rawson C, Chapman H, Blair P, Nice H, Reitsema T (2014a) Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res 50:420–431

    Article  CAS  Google Scholar 

  • Leusch FDL, Khan SJ, Laingam S, Prochazka E, Froscio S, Trinh T, Chapman HF, Humpage A (2014b) Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water. Water Res 49:300–315

    Article  CAS  Google Scholar 

  • Li J, Chen M, Wang ZJ, Ma M, Peng XZ (2011) Analysis of environmental endocrine disrupting activities in wastewater treatment plant effluents using recombinant yeast assays incorporated with exogenous metabolic activation system. Biomed Environ Sci 24:132–139

    Google Scholar 

  • Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487

    Article  CAS  Google Scholar 

  • Matthiessen P, Arnold D, Johnson AC, Pepper TJ, Pottinger TG, Pulman KGT (2006) Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Sci Total Environ 367:616–630

    Article  CAS  Google Scholar 

  • McLachlan JA, Korach KS, Newbold RR, Degen GH (1984) Diethylstilbestrol and other estrogens in the environment. Fundam ApplToxicol 4:686–691

    Article  CAS  Google Scholar 

  • Ministry of the Environment in Japan (2009) substance: 4-n-octylphenol, Japan

  • Mispagel C, Shiraishi F, Allinson M, Allinson G (2005) Estrogenic activity of treated municipal effluent from seven sewage treatment plants in Victoria, Australia. Bull Environ Comtam Toxicol 74:853–856

    Article  CAS  Google Scholar 

  • Mispagel C, Allinson G, Allinson M, Shiraishi F, Nishikawa M, Moore MR (2009) Observations on the estrogenic activity and concentration of 17 beta-estradiol in the discharges of 12 wastewater treatment plants in Southern Australia. Arch Environ Contam Toxicol 56:631–637

    Article  CAS  Google Scholar 

  • Preuss TG, Gehrhardt J, Schirmer K, Coors A, Rubach M, Russ A, Jones PD, Giesy JP, Ratte HT (2006) Nonylphenol isomers differ in estrogenic activity. Environ Sci Technol 40:5147–5153

    Article  CAS  Google Scholar 

  • Rostowski P, Horwood J, Shears JA, Lange A, Oladapo FO, Besselink HT, Tyler CR, Hill EM (2011) Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents. Environ Sci Technol 45(24):10660–10667

    Article  Google Scholar 

  • Routledge EJ, Sumpter JP (1997) Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem 272:3280–3288

    Article  CAS  Google Scholar 

  • Sonneveld E, Jansen HJ, Riteco JAC, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    Article  CAS  Google Scholar 

  • Sonneveld E, Pieterse B, Schoonen WG, van der Burg B (2011) Validation of in vitro screening models for progestagenic activities: inter-assay comparison and correlation with in vivo activity in rabbits. Toxicol In Vitro 25:545–554

    Article  CAS  Google Scholar 

  • Standley LJ, Rudel RA, Swartz CH, Attfield KR, Christian J, Erickson M, Brody JG (2008) Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environ Toxicol Chem 27(12):2457–2468

    Article  CAS  Google Scholar 

  • Sumpter JP (2005) Endocrine disrupters in the aquatic environment: an overview. Acta Hydrochim Hydrobiol 33:9–16

    Article  CAS  Google Scholar 

  • Tan BL, Hawker DW, Müller JF, Leusch FD, Tremblay LA, Chapman HF (2007) Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ Int 33:654–669

    Article  CAS  Google Scholar 

  • Trinh T, Harden NB, Coleman HM, Khan SJ (2011) Simultaneous determination of estrogenic and androgenic hormones in water by isotope dilution gas chromatography-tandem mass spectrometry. J Chromatogr A 1218:1668–1676

    Article  CAS  Google Scholar 

  • Urbatzka R, van Cauwenberge A, Maggioni S, Vigano L, Mandich A, Benfenati E, Lutz I, Kloas W (2007) Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere 67(6):1080–1087

    Article  CAS  Google Scholar 

  • van der Burg B, Winter R, Man H-Y, Vangenechten C, Berckmans P, Weimer M, Witters H, van der Linden S (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reprod Toxicol 30:18–24

    Article  Google Scholar 

  • Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van der Burg B (2008) Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42:5814–5820

    Article  Google Scholar 

  • Vanderford BJ, Snyder SA (2006) Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ Sci Technol 40:7312–7320

    Article  CAS  Google Scholar 

  • Viswanath G, Halder S, Divya G, Majumder CB, Roy P (2008) Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay. Mol Cell Endocrinol 295:1–9

    Article  CAS  Google Scholar 

  • Wang B, Huang B, Jin W, Zhao SM, Li FR, Hu P, Pan XJ (2013) Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environ Sci Pollut Res 20:3185–3194

    Article  CAS  Google Scholar 

  • WHO/UNEP (2013) State of the science of endocrine disrupting chemicals — 2012. World Health Organization and International Program on Chemical Safety, 289pp

  • Williams M, Woods M, Kumar A, Ying GG, Shareef A, Karkkainen M, Kookana R (2007) Endocrine disrupting chemicals in the Australian riverine environment, Land and Water Australia/CSIRO, Braddon, ACT, Australia

  • Ying GG, Kookana RS, Kumar A (2008) Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environ Toxicol Chem 27:87–94

    Article  CAS  Google Scholar 

  • Ying G-G, Kookana R, Kolpin D (2009) Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. J Environ Monitor 11:1498–1505

    Article  CAS  Google Scholar 

  • Young WF, Whitehouse P, Johnson I, Sorokin N (2004) Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. United Kingdom Environment Agency

  • Zeilinger J, Steger-Hartmann T, Maser E, Goller S, Vonk R, Lange R (2009) Effects of synthetic gestagens on fish reproduction. Environ Toxicol Chem 28:2663–2670

    Article  CAS  Google Scholar 

  • Zhang CX, Eganhouse RP, Pontolillo J, Cozzarelli IM, Wang YX (2012) Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J Chromatogr A 1230:110–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of E. Prochazka and T. Teo for their laboratory analysis, and M. Allinson, J. Blackbeard, H. Chapman, S. Codi-King, A. Colville, D. Gale, B. Harper, M. Mortimer, and T. Reitsema for their input in planning and implementation during this project. Sampling could not have been completed without the dedication of many industry partners, whose support we gratefully acknowledge. This study was funded by the Australian Research Council (ARC Linkage scheme LP100100163) in collaboration with Water Research Australia, Sydney Water, Seqwater and Melbourne Water, and supported in-kind by the Queensland Department of Science, Information, Technology, Innovation and the Arts (DSITIA) and the Western Australia Department of Water. P.S. was supported with an Australian Postgraduate Award (Industry) scholarship and Water Research Australia PhD top-up scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic D. L. Leusch.

Additional information

Responsible editor: Ester Heath

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, P.D., Bartkow, M., Blockwell, S.J. et al. An assessment of endocrine activity in Australian rivers using chemical and in vitro analyses. Environ Sci Pollut Res 21, 12951–12967 (2014). https://doi.org/10.1007/s11356-014-3235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3235-7

Navigation