Skip to main content

Advertisement

Log in

Release of vanadium from oxidized sediments: insights from different extraction and leaching procedures

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Although the attention for vanadium (V) as a potentially harmful element is growing and some countries adopted threshold values for V in soils, sediments, groundwater, or surface water, V is generally of little importance in environmental legislation and the knowledge about the behavior of V in the environment is still limited. In the present study, the release of V from oxidized sediments, sediment-derived soils, and certified reference materials was investigated by means of several types of leaching tests and extractions that are frequently used for soil and sediment characterization. The pHstat leaching tests and single and sequential extractions applied in this study show that V generally displays a very limited actual and potential mobility in sediment. “Mobile” V concentrations, as estimated by the amount of V released by a single extraction with CaCl2 0.01 mol L−1, were low, even in the most contaminated sediment samples. Only under strongly acidifying conditions (pH 2), such as in the case of ingestion of soil or sediment or in accidental spills, a substantial release of V can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarabi-Karasgani M, Rashchi F, Mostou N, Vahidi E (2010) Leaching of vanadium from LD converter slag using sulfuric acid. Hydrometallurgy 102:14–21. doi:10.1016/j.hydromet.2010.01.006

    Article  CAS  Google Scholar 

  • Abdel-Aal EA, Rashad MM (2004) Kinetic study on the leaching of spent nickel oxide catalyst with sulphuric acid. Hydrometallurgy 74:189–194. doi:10.1016/j.hydromet.2004.03.005

    Article  CAS  Google Scholar 

  • Aide M (2005) Geochemical assessment of iron and vanadium relationships in oxic soil environments. Soil Sediment Contam 14:403–416. doi:10.1080/15320380500180382

    Article  CAS  Google Scholar 

  • Allison JD, Brown DS, Novogradac KJ (1999) MINTEQA2/PRODEFA2, a chemical assessment model for environmental systems: version 4.0 user's manual. Environmental Research Laboratory Office of Research and Development, US-EPA, Athens

  • Alloway BJ (1995) Heavy metals in soils. Chapman and Hall, London

    Book  Google Scholar 

  • ATSDR (2012) Agency for Toxic Substances and Disease Registry—toxicological profile for vanadium. US Department of Health and Human Services, Public Health Services, Atlanta

  • Aydin F, Saydut A, Gunduz B, Aydin I, Hamamci C (2012) Chemical speciation of vanadium in coal bottom ash. Clean—Soil Air Water 40:444. doi:10.1002/clen.201100195

    Article  CAS  Google Scholar 

  • Aydin I, Aydin F, Hamamci C (2013) Vanadium fractions determination in asphaltite combustion waste using sequential extraction with ICP-OES. Microchem J 108:64–67. doi:10.1016/j.microc.2012.12.001

    Article  CAS  Google Scholar 

  • Baken S, Larsson MA, Gustafsson JP, Cubadda F, Smolders E (2012) Ageing of vanadium in soils and consequences for bioavailability. Eur J Soil Sci 63:839–847. doi:10.1111/j.1365-2389.2012.01491.x

    Article  CAS  Google Scholar 

  • Berrow ML, Wilson MJ, Reaves GA (1978) Origin of extractable titanium and vanadium in the a horizons of Scottish podzols. Geoderma 21:89–103. doi:10.1016/0016-7061(78)90019-8

    Article  CAS  Google Scholar 

  • Borggaard OK (1979) Selective extraction of amorphous iron oxides by EDTA from a Danish sandy loam. J Soil Sci 30:727–734. doi:10.1111/j.1365-2389.1979.tb01022.x

    Article  CAS  Google Scholar 

  • Brauer M, Stitt M (1990) Vanadate inhibits fructose-2,6-bisphosphatase and leads to an inhibition of sucrose synthesis in barley leaves. Plant Physiol 78:568–573. doi:10.1111/j.1399-3054.1990.tb05243.x

    Article  CAS  Google Scholar 

  • Cappuyns V, Slabbinck E (2012) Occurrence of vanadium in Belgian and European alluvial soils. Appl Environ Soil Sci. doi:10.1155/2012/979501, art. ID 979501

    Google Scholar 

  • Cappuyns V, Swennen R, Verhulst J (2004) Assessment of acid neutralizing capacity and potential mobilisation of trace metals from land-disposed dredged sediments. Sci Total Environ 333:233–247. doi:10.1016/j.scitotenv.2004.05.007

    Article  CAS  Google Scholar 

  • Cappuyns V, Swennen R (2008) The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J Hazard Mater 158:185–195. doi:10.1016/j.jhazmat.2008.01.058

    Article  CAS  Google Scholar 

  • Carter CW, Suffet IH (1993) Interactions between dissolved humic and fulvic acids and pollutants in aquatic environments. In: Swann RL, Eschenroeder A (eds) Fate of chemicals in the environment. Compartmental and multimedia models for predictions. ACS Symposium Series, vol. 225, chapter 11, pp 215–229

  • Chen ZL, Rahman MM, Naidu R (2007) Speciation of vanadium by anion-exchange chromatography with inductively coupled plasma mass spectrometry and confirmation of vanadium complex formation using electrospray mass spectrometry. J Anal At Spectrom 22:811–816. doi:10.1039/B705481E

    Article  CAS  Google Scholar 

  • Chen ZL, Owens G (2008) Trends in speciation analysis of vanadium in environmental samples and biological fluids—a review. Anal Chim Acta 607:1–14. doi:10.1016/j.aca.2007.11.013

    Article  CAS  Google Scholar 

  • Chhabra R, Pleysier J, Cremers A (1975) The measurement of the cation exchange capacity and exchangeable cations in soils: a new method. In: Proceedings of the International Clay Conference, 16–23 July, Mexico City. Applied Publishing Ltd., Wilmette, pp 439–449

  • Colina M, Gardiner PHE, Rivas Z, Troncone F (2005) Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography–inductively coupled plasma–mass spectrometry. Anal Chim Acta 538:107–115. doi:10.1016/j.aca.2005.02.044

    Article  CAS  Google Scholar 

  • Crans DC, Amin SS, Keramidas AD (1998) Chemistry and relevance to vanadium in the environment. In: Nriagu JO (ed) Vanadium in the environment. Part 1: chemistry and biochemistry. Wiley, New York, pp 73–95

  • Dobrowolski R, Adamczyk A, Otto M (2013) Determination of vanadium in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry using permanent modifiers. Talanta 113:19–25. doi:10.1016/j.talanta.2013.03.085

    Article  CAS  Google Scholar 

  • Edwards R, Lepp NW, Jones KC (1995) Other less abundant elements of potential significance. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, Chapman and Hall, London, pp 307–352

    Google Scholar 

  • Frank A, Madej A, Galgan V, Peterson LR (1996) Vanadium poisoning of cattle with basic slag: concentrations in tissues from poisoned animals and from a reference, slaughter-house material. Sci Total Environ 181:73–92. doi:10.1016/0048-9697(95)04962-2

    Article  CAS  Google Scholar 

  • Fry FH, Dougan BA, McCann N, Ziegler CJ, Brasch NE (2005) Characterization of novel vanadium(III)/acetate clusters formed in aqueous solution. Inorg Chem 44:5197–5199. doi:10.1021/ic050336f

    Article  CAS  Google Scholar 

  • Gäbler HE, Glüh K, Bahr A, Utermann J (2009) Quantification of vanadium adsorption by German soils. J Geochem Explor 103:37–44

    Article  Google Scholar 

  • Gustafsson JP (2004) Visual MINTEQ. Version 3.0: a Windows version of MINTEQA2, version 4.0. Available at http://www2.lwr.kth.se/English/OurSoftware/vminteq/

  • Guibal E, Guzman J, Navarro R, Revilla J (2003) Vanadium extraction from fly ash—preliminary study of leaching, solvent extraction, and sorption on chitosan. Sep Sci Technol 38(12–13):2881–2899. doi:10.1081/SS-120022577

    Article  CAS  Google Scholar 

  • Hernandez H, Rodriguez R (2012) Geochemical evidence for the origin of vanadium in an urban environment. Environ Monit Assess 184:5327–5342

    Article  CAS  Google Scholar 

  • Hisham KF, El-Rakaiby RM (2009) Environmental geochemistry for heavy metals and uranium potentiality in oil shale sediments, Quseir, Red Sea, Egypt. Journal of Applied Scientific Research 5:914–921

    Google Scholar 

  • Hu Y, Zhang Y, Bao S, Liu T (2012) Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal. Int J Miner Metall Mater 19(10):893–898. doi:10.1007/s12613-012-0644-9

    Article  CAS  Google Scholar 

  • IARC (2006) IARC monographs on the evaluation of carcinogenic risks to human, volume 86. Cobalt in hard-metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC, Lyon, pp 225–292

    Google Scholar 

  • Jeffery PG (1981) Chemical methods of rock analysis. Pergamon, Oxford, pp 193–194

  • Jen J-F, Wua M-H, Yang TC (1997) Simultaneous determination of vanadium(IV) and vanadium(V) as EDTA complexes by capillary zone electrophoresis. Anal Chim Acta 339:251–257. doi:10.1016/S0003-2670(96)00482-5

    Article  CAS  Google Scholar 

  • Kosmulski M (2004) pH-dependent surface charging and points of zero charge II. Update. J Colloid Interface Sci 275:214–224. doi:10.1016/j.jcis.2004.02.029

    Article  CAS  Google Scholar 

  • Krishna AK, Govil PK (2007) Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ Monit Assess 124:263–275. doi:10.1007/s10661-006-9224-7

    Article  CAS  Google Scholar 

  • Li MT, Wei C, Zhou XJ, Qiu S, Deng ZG, Li XB (2012) Kinetics of vanadium leaching from black shale in non-oxidative conditions. Miner Process Ext Metall 121:40–47. doi:10.1179/1743285511Y.0000000012

    Article  CAS  Google Scholar 

  • Mandiwana KL, Panichev N, Molatlhegi R (2005) The leaching of V(V) with PO4 3− in the speciation analysis of soil. Anal Chim Acta 545:239–243. doi:10.1016/j.aca.2005.04.075

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM (1982) Critical stability constants, vol. 1. Plenum, New York (1982, vol. 5)

  • McGrath D (1996) Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci Total Environ 178:37–44. doi:10.1016/0048-9697(95)04795-6

    Article  CAS  Google Scholar 

  • Molina M, Aburto F, Calderón R, Cazanga M, Escudey M (2009) Trace element composition of selected fertilizers used in Chile: phosphorus fertilizers as a source of long-term soil contamination. Soil Sediment Contam: Int J 18:497–511. doi:10.1080/15320380902962320

    Article  CAS  Google Scholar 

  • Navarro R, Guzmana J, Saucedoa I, Revillab J, Guibal E (2007) Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manag 27:425–438. doi:10.1016/j.wasman.2006.02.002

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 538–580

    Google Scholar 

  • Nowack B, Sigg L (1997) Dissolution of Fe(III)(hydr) oxides by metal–EDTA complexes. Geochim Cosmochim Acta 61:951–963. doi:10.1016/S0016-7037(96)00391-2

    Article  CAS  Google Scholar 

  • OEHHA (2013) Proposed notification level for vanadium. Available at http://oehha.ca.gov/water/pals/vanadium.html. Accessed 6 April 2013

  • Óvári M, Csukás M, Záray G (2001) Speciation of beryllium, nickel, and vanadium in soil samples from Csepel Island, Hungary. Fresenius J Anal Chem 370:768–775. doi:10.1007/s002160100877

    Article  Google Scholar 

  • Panichev N, Mandiwana K, Moema D, Molatlhegi R, Ngobeni P (2006) Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine. J Hazard Mater 137:649–653. doi:10.1016/j.jhazmat.2006.03.006

    Article  CAS  Google Scholar 

  • Peacock CL, Sherman DM (2004) Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 68:1723–1733. doi:10.1016/j.gca.2003.10.018

    Article  CAS  Google Scholar 

  • Poledniok J, Buhl F (2003) Speciation of vanadium in soil. Talanta 59:1–8. doi:10.1016/S0039-9140(02)00322-3

    Article  CAS  Google Scholar 

  • Pueyo M, Rauret G, Lück D, Yli-Halla M, Muntau H, Quevauviller P, López-Sánchez JF (2001) Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimized three-step sequential extraction procedure. J Environ Monit 3:243–250. doi:10.1039/B010235K

    Article  CAS  Google Scholar 

  • Pyrzyńska K, Wierzbicki T (2004) Determination of vanadium species in environmental samples. Talanta 64:823–829. doi:10.1016/j.talanta.2004.05.007

    Article  Google Scholar 

  • Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis: I. Standardization. Trends Anal Chem 17:289–298. doi:10.1016/S0165-9936(97)00119-2

    Article  CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez J, Sauquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to certification of new soil and sediment reference materials. J Environ Monit 1:57–60. doi:10.1039/A807854H

    Article  CAS  Google Scholar 

  • Schuiling RD, van Enk RJ, Bergsma HLT (2003) Natuurlijk voorkomen, mobiliteit en industrieel gebruik van “exoten” voorkomend in de Nederlandse bodem (Br, I, Ba, Sb, V, Sn, Co, Mo, Se). [Natural occurrence, mobility and application of exotic elements in Dutch soils (I, Ba, Sb, V, Sn, Co, Mo, Se)]. Report, Geochem Research BV, Utrecht, The Netherlands, pp 35

  • Smit CE (2012) Environmental risk limits for vanadium in water: a proposal for water quality standards in accordance with the Water Framework Directive. National Institute for Public Health and the Environment, RIVM Letter Report 601714021/2012, pp 73

  • Smith PG, Boutin C, Knopper L (2013) Vanadium pentoxide phytotoxicity: effects of species selection and nutrient concentration. Arch Environ Contam Toxicol 64:87–96. doi:10.1007/s00244-012-9806-z

    Article  CAS  Google Scholar 

  • Sugiyama M, Tamada T, Hori T (2001) Liquid chromatography—catalytic analysis detection for highly sensitive and automated fractional determination of vanadium(IV) and -(V). Anal Chim Acta 431:141–148. doi:10.1016/S0003-2670(00)01314-3

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis. Soil Science Society of America, Madison, pp 1018–1020

    Google Scholar 

  • Teng Y, Jiao X, Wang J, Xu W, Yang J (2009) Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province, China. Chin J Geochem 28:105–111. doi:10.1007/s11631-009-0105-y

    Article  CAS  Google Scholar 

  • Teng Y, Yang J, Wang J, Song L (2011) Bioavailability of vanadium extracted by EDTA, HCl, HOAC, and NaNO3 in topsoil in the Panzhihua urban park, located in southwest China. Biol Trace Elem Res 144:1394–1404. doi:10.1007/s12011-011-9082-1

    Article  CAS  Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178:3–10. doi:10.1016/0048-9697(95)04791-3

    Article  CAS  Google Scholar 

  • Van der Sloot HA, Comans RNJ, Hjelmar O (1996) Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils. Sci Total Environ 178:111–126. doi:10.1016/0048-9697(95)04803-0

    Article  Google Scholar 

  • VMM (2006) Lozingen in de lucht 1990–2005. Vlaamse Milieumaatschappij [Air emissions 1990–2005, Flemish Environmental Agency], Aalst. 236 pp. + supplements, Report no. D/2006/6871/016. Available at http://www.vlaanderen.be/nl/publicaties/detail/lozingen-in-de-lucht-1990-2005. Accessed 25 March 2013

  • Wang M, Xiao L, Li Q, Wang X, Xiang X (2009) Leaching of vanadium from stone coal with sulfuric acid. Rare Met 28:1–4. doi:10.1007/s12598-009-0001-y

    Article  Google Scholar 

  • Van Herreweghe S, Swennen R, Cappuyns V, Vandecasteele C (2002) Speciation of heavy metals and metalloids in soils: an integrated study near former ore treatment plants with emphasis on pH stat-leaching. J Geochem Explor 76:113–138. doi:10.1016/S0375-6742(02)00232-7

    Article  Google Scholar 

  • van Zinderen Bakker EM, Jaworski JF (1980) Effects of vanadium in the Canadian environment. National Research Council of Canada, Associate Committee on Scientific Criteria for Environmental Quality, Subcommittee on Heavy Metals and Certain Other Compounds, NRCC No. 18132

  • Vogel AI (1961) Nephelometric determination of sulfate. In: Longman (ed) Quantitative inorganic analysis, Longmans, Londen, pp 850–851

Download references

Acknowledgments

Grateful acknowledgements are made to Yo De Groote for her valuable comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cappuyns.

Additional information

Responsible editor: Céline Guéguen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappuyns, V., Swennen, R. Release of vanadium from oxidized sediments: insights from different extraction and leaching procedures. Environ Sci Pollut Res 21, 2272–2282 (2014). https://doi.org/10.1007/s11356-013-2149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2149-0

Keywords

Navigation