Skip to main content

Advertisement

Log in

Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay estuary, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nutrient load into the ocean can be retained during the process of plant uptake and sedimentation in marshes along the bay zone. Seasonal variations of biomass and nutrient concentration in three dominated plant assemblages and associated sediments were monitored in this study area to determine effects of salt marsh on nutrient retention. Results showed that plant aboveground biomass displayed a unimodal curve with nutrient concentration generally decreased from spring to winter. Belowground biomass was relatively low during the rapid growth period with nutrient concentration tending to decrease and then increase during this period. Plant total nitrogen (TN) pools are higher than total phosphorus (TP) pools, and both pools showed significant seasonal variations. Water purification coefficients (WPC) of nutrients by plant assimilation were 34.4/17.3, 19.3/24.0, and 5.14/6.04 t/(m2 year) (TN/TP) for Phragmites australis, Spartina alterniflora, and Scirpus mariqueter, respectively. Overall, these results suggest that higher annual plant biomass and nutrient assimilation contribute to greater nutrient retention capacity and accumulation in sediments, thereby enabling reduced eutrophication in transitional waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam P (1990) Salt marsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Álvarez-Rogel J, Jiménez-Cárceles FJ, Egea-Nicolás C (2007) Phosphorus retention in a coastal salt marsh in SE Spain. Sci Total Environ 378:71–74

    Article  Google Scholar 

  • Bai JH, Gao HF, Deng W, Yang ZF, Cui BS, Xiao R (2010) Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biol Fertil Soils 46:525–529

    Article  CAS  Google Scholar 

  • Bai JH, Gao HF, Xiao R, Wang JJ, Huang C (2012a) A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: issues and methods. Clean Soil Air Water 40:1099–1105

    Article  CAS  Google Scholar 

  • Bai JH, Wang QG, Deng W, Gao HF, Tao WD, Xiao R (2012b) Spatial and seasonal distribution of nitrogen in marsh soils of a typical floodplain wetland in Northeast China. Environ Monit Assess 184:1253–1263

    Article  CAS  Google Scholar 

  • Boers PCM, Van-Raaphorst W, Van-der-Molen TD (1998) Phosphorus retention in sediments. Water Sci Technol 37:31–39

    CAS  Google Scholar 

  • Boyer KE, Fong P, Vance RR, Ambrose RF (2001) Salicornia virginica in a southern California salt marsh: seasonal patterns and nutrient-enrichment experiment. Wetlands 21:315–326

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat Bot 69:313–324

    Article  CAS  Google Scholar 

  • Bromberg-Gedan K, Silliman BR, Bertness MD (2009) Centuries of human driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141

    Article  Google Scholar 

  • Cartaxana P, Catarino F (1997) Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. J. J Coast Conserv 3:27–34

    Article  Google Scholar 

  • Chung CH, Zhuo RZ, Xu GW (2004) Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecol Eng 23:135–150

    Article  Google Scholar 

  • De-la-Cruz AA, Hackney CT (1977) Energy value, elemental composition, and productivity of belowground biomass of a Juncus tidal marsh. Ecology 58:1165–1170

    Article  Google Scholar 

  • DeLaune RD, Jugsujinda A, West JL, Johnson CB, Kongchum M (2005) A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecol Eng 25:315–321

    Article  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Ann Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Feng LH, Bao YX (2006) Relationship between population, resource, environment and development of reclamation area of tidal flats—a case of Cixi City. Mar Sci 30:88–91 (in Chinese)

    Google Scholar 

  • Gao HF, Bai JH, Xiao R, Yan DH, Huang LB, Huang C (2012) Soil net nitrogen mineralization in salt marshes with different flooding periods in the Yellow River Delta, China. Clean-Soil Air Water 40:1111–1117

    Article  CAS  Google Scholar 

  • González-Alcaraz MN, Egea C, Jiménez-Cárceles FJ, Párraga I, María-Cervantesa A, Delgado MJ, Álvarez-Rogel J (2012) Storage of organic carbon, nitrogen and phosphorus in the soil–plant system of Phragmites australis stands from a eutrophicated Mediterranean salt marsh. Geoderma 185–186:61–72

    Article  Google Scholar 

  • González-Alcaraz MN, Egea C, María-Cervantesa A, Jiménez-Cárceles FJ, Álvarez-Rogel J (2011) Effects of eutrophic water flooding on nitrate concentrations in mine wastes. Ecol Eng 37:693–702

    Article  Google Scholar 

  • Howarth RW (1993) Microbial processes in salt-marsh sediments. In: Ford ET (ed) Aquatic microbiology. Blackwell, Oxford, pp 239–261

    Google Scholar 

  • Kang S, Kang H, Ko D, Lee D (2002) Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica. Ecol Eng 18:467–475

    Article  Google Scholar 

  • Kirwan M, Guntenspergen GR, Morris JT (2009) Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Chang Biol 15:1982–1989

    Article  Google Scholar 

  • Lai DYF, Lam KC (2008) Phosphorus retention and release by sediments in the eutrophic Mai Po Marshes, Hong Kong. Mar Pollut Bull 57:349–356

    Article  CAS  Google Scholar 

  • Leonard LA, Hine AC, Luther ME (1995) Surficial sediment transport and deposition processes in a Juncus roemarianus marsh, West-Central Florida. J Coast Res 11:322–336

    Google Scholar 

  • Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Chen XL, Jiang LF, Chen JK (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  • Li H, Yang SL (2009) Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. J Coast Res 25:915–924

    Article  Google Scholar 

  • Liang W, Shao XX, Wu M, Li WH, Ye XQ, Jiang KY (2012) Phosphorus fraction in the sediments from different vegetation type in Hangzhou Bay coastal wetlands. Acta Ecol Sin 32:5025–5033 (in Chinese)

    Article  CAS  Google Scholar 

  • Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  Google Scholar 

  • Lindau CW, Delaune RD, Scaroni AE, Nyman JA (2008) Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana. Chemosphere 70:886–894

    Article  CAS  Google Scholar 

  • Marinucci AC (1982) Trophic importance of Spartina alterniflora production and decomposition to the marsh–estuarine ecosystem. Biol Conserv 22:35–58

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People's Republic of China (MEPC) (2010) Bulletin of China's coastal sea environmental status. http://www.mep.gov.cn/gzfw/xzzx/wdxz/201206/P020120613558299715101.pdf

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York, p 919

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Negrin VL, de Villalobos AE, González-Trilla G, Botté SE, Marcovecchio JE (2012) Above- and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh. Chem Ecol 28:391–404

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1980) Total nitrogen analysis of soil and plant tissues. J Assoc Offic. Anal Chem 63:770–778

    CAS  Google Scholar 

  • Neves JP, Ferreira LF, Simões MP, Gazarini LC (2007) Primary production and nutrient content in two salt marsh species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in Southern Portugal. Estuar Coasts 30:459–468

    Article  CAS  Google Scholar 

  • Ocean and Fisheries Bureau of Zhejiang Province (OFBZ) (2011) Bulletin of marine environmental status in Zhejiang Province, China. http://www.zjoaf.gov.cn/attaches/2012/07/11/2012071100007.pdf

  • Palomo L, Clavero V, Izquierdo JJ, Avilés A, Becerra J, Niell FX (2004) Influence of macrophytes on sediment phosphorus accumulation in a eutrophic estuary (Palmones River, Southern Spain). Aquat Bot 80:103–113

    Article  CAS  Google Scholar 

  • Pant HK, Reddy KR (2001) Phosphorus sorption characteristics of estuarine sediment under different redox conditions. J Environ Qual 30:1474–1480

    Article  CAS  Google Scholar 

  • Picard CR, Fraser LH, Steer D (2005) The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresour Technol 96:1039–1047

    Article  CAS  Google Scholar 

  • Quan WM, Han JD, Shen AL, Ping XY, Qian PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64:21–37

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–211

    CAS  Google Scholar 

  • Schalles JF, Shure DJ (1989) Hydrology, community structure, and productivity patterns of a dystrophic Carolina Bay wetland. Ecol Monogr 59:365–385

    Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 151:356–363

    Article  Google Scholar 

  • Schulz M, Kozerski HP, Pluntke T, Rinke K (2003) The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res 37:569–578

    Article  CAS  Google Scholar 

  • Shao XX, Yang WY, Wu M (2011) Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands. Chin J Appl Ecol 22:658–664 (in Chinese)

    CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Song KY, Zoh KD, Kang H (2007) Release of phosphate in a wetland by changes in hydrological regime. Sci Total Environ 380:13–18

    Article  CAS  Google Scholar 

  • Sousa AI, Lillebø AI, Pardal MA, Caçador I (2010) Productivity and nutrient cycling in salt marshes: contribution to ecosystem health. Estuar Coast Shelf Sci 87:640–646

    Article  CAS  Google Scholar 

  • Sousa AI, Lillebø AI, Risgaard-Petersen N, Pardal MA, Caçador I (2012) Denitrification: an ecosystem service provided by salt marshes. Mar Ecol Prog Ser 448:79–92

    Article  CAS  Google Scholar 

  • Stumpf RP (1983) The process of sedimentation on the surface of a salt marsh. Estuar Coast Shelf Sci 17:495–508

    Article  Google Scholar 

  • White DS, Howes BL (1994) Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnol Oceanogr 39:1878–1892

    Article  Google Scholar 

  • Yang JZ, Zhao YL, Wang Y (2004) Remote sensing dynamic monitoring of tidal banks in the Hangzhou Bay. Chin J Geol 39:168–177 (in Chinese)

    Google Scholar 

  • Zhou JL, Wu Y, Kang QS, Zhang J (2007) Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuar Coast Shelf Sci 71:47–59

    Article  Google Scholar 

  • Zhou XJ, Gao S (2004) Spatial variability and representation of seabed sediment grain sizes: an example from the Zhoushan-Jinshanwei transect, Hangzhou Bay, China. Chin Sci Bull 49:2503–2507

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21077088; 31000296) and the National Major Science and Technology Programs for Water Pollution Control and Treatment (2012ZX07506-006). We thank Stacey Ollis for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Liang.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, X., Wu, M., Gu, B. et al. Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay estuary, China. Environ Sci Pollut Res 20, 6382–6391 (2013). https://doi.org/10.1007/s11356-013-1698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1698-6

Keywords

Navigation