Skip to main content
Log in

Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Electronic noses represent a technique for the measurement of exhaled breath volatile compound pattern which can discriminate patients with obstructive sleep apnoea (OSA) from control subjects. Although overnight changes in circulating biomarkers were reported, this effect on the exhaled volatile compound pattern has not been studied before. We aimed to compare breath patterns in the evening and in the morning in patients with OSA and to study the ability of the electronic nose to distinguish patients from controls based on these exhaled volatile patterns.

Methods

Exhaled breath volatile compound pattern was measured before and after night in 26 patients with suspected sleep-disordered breathing (53 ± 15 years) who underwent polysomnography and in ten control subjects (37 ± 15 years), by whom sleep-disordered breathing was excluded with a home apnoea screening device. Breath measurements were also performed in the morning in 26 healthy, non-smoking age-matched controls (48 ± 10 years) with no complaints about disturbed sleep. Exhaled volatile compound pattern was processed with a Cyranose 320 electronic nose, and principal component analysis was used for statistical analysis.

Results

Exhaled volatile compound patterns recorded in the evening and in the morning were different in patients with OSA (p = 0.01) but not in non-OSA habitual snorers (p = 0.49) or in control subjects (p = 0.23). The electronic nose distinguished patients with OSA from control subjects based on the breath samples collected in the morning (p < 0.001, classification accuracy 77 %) but not in the evening (p > 0.05).

Conclusions

Evening and morning exhaled volatile compound patterns are different in OSA. This might affect the ability of electronic noses to identify this disorder. Overnight alterations in volatile substances need to be taken into account during exhaled breath measurements in OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ioachimescu OC, Collop NA (2012) Sleep-disordered breathing. Neurol Clin 30(4):1095–1136

    Article  PubMed  Google Scholar 

  2. Eastwood PR, Malhotra A, Palmer LJ, Kezirian EJ, Horner RL, Ip MS, Thurnheer R, Antic NA, Hillman DR (2010) Obstructive sleep apnoea: from pathogenesis to treatment: current controversies and future directions. Respirology 15(4):587–595

    Article  PubMed  Google Scholar 

  3. Li Y, Chongsuvivatwong V, Geater A, Liu A (2009) Exhaled breath condensate cytokine level as a diagnostic tool for obstructive sleep apnea syndrome. Sleep Med 10(1):95–103

    Article  PubMed  Google Scholar 

  4. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392

    Article  CAS  PubMed  Google Scholar 

  5. Petrosyan M, Perraki E, Simoes D, Koutsourelakis I, Vagiakis E, Roussos C, Gratziou C (2008) Exhaled breath markers in patients with obstructive sleep apnoea. Sleep Breath 12(3):207–215

    Article  PubMed  Google Scholar 

  6. Goldbart AD, Krishna J, Li RC, Serpero LD, Gozal D (2006) Inflammatory mediators in exhaled breath condensate of children with obstructive sleep apnea syndrome. Chest 130(1):143–148

    Article  PubMed  Google Scholar 

  7. Verhulst SL, Aerts L, Jacobs S, Schrauwen N, Haentjens D, Claes R, Vaerenberg H, Van Gaal LF, De Backer WA, Desager KN (2008) Sleep-disordered breathing, obesity, and airway inflammation in children and adolescents. Chest 134(6):1169–1175

    Article  PubMed  Google Scholar 

  8. Olopade CO, Christon JA, Zakkar M, Hua C, Swedler WI, Scheff PA, Rubinstein I (1997) Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 111(6):1500–1504

    Article  CAS  PubMed  Google Scholar 

  9. Benedek P, Lazar Z, Bikov A, Kunos L, Katona G, Horvath I (2013) Exhaled biomarker pattern is altered in children with obstructive sleep apnoea syndrome. Int J Pediatr Otorhinolaryngol 77(8):1244–1247

    Article  PubMed  Google Scholar 

  10. Greulich T, Hattesohl A, Grabisch A, Koepke J, Schmid S, Noeske S, Nell C, Wencker M, Jorres RA, Vogelmeier CF, Kohler U, Koczulla AR (2013) Detection of obstructive sleep apnoea by an electronic nose. Eur Respir J 42(1):145–155

    Article  PubMed  Google Scholar 

  11. Bikov A, Pako J, Kovacs D, Tamasi L, Lazar Z, Rigo J, Losonczy G, Horvath I (2011) Exhaled breath volatile alterations in pregnancy assessed with electronic nose. Biomarkers 16(6):476–484

    Article  CAS  PubMed  Google Scholar 

  12. Bikov A, Paschalaki K, Logan-Sinclair R, Horvath I, Kharitonov SA, Barnes PJ, Usmani OS, Paredi P (2013) Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm Med 13(1):43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bikov A, Lazar Z, Schandl K, Antus BM, Losonczy G, Horvath I (2011) Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiol Hung 98(3):321–328

    Article  CAS  PubMed  Google Scholar 

  14. Kovacs D, Bikov A, Losonczy G, Murakozy G, Horvath I (2013) Follow up of lung transplant recipients using an electronic nose. J Breath Res 7(1):017117

    Article  PubMed  Google Scholar 

  15. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M (2005) Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4):499–521

    PubMed  Google Scholar 

  16. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 8(5):597–619

    PubMed Central  PubMed  Google Scholar 

  17. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18

    Article  Google Scholar 

  18. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180(11):1076–1082

    Article  CAS  PubMed  Google Scholar 

  19. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160

    Article  PubMed  Google Scholar 

  20. Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors Actuators B Chem 72(1):41–50

    Article  CAS  Google Scholar 

  21. Chavez C, Coufal CD, Carey JB, Lacey RE, Beier RC, Zahn JA (2004) The impact of supplemental dietary methionine sources on volatile compound concentrations in broiler excreta. Poult Sci 83(6):901–910

    Article  CAS  PubMed  Google Scholar 

  22. Maciejak TR, Kukawska-Tarnawska B, Tyszkiewicz J, Tysykiewicz S (2002) Multi-sensor odour detection and measurement of polluted food. Pol J Food Nutr Sci 12(53):45–48

    Google Scholar 

  23. D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2):170–176

    Article  PubMed  Google Scholar 

  24. Dragonieri S, Annema JT, Schot R, van der Schee MP, Spanevello A, Carratu P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Article  PubMed  Google Scholar 

  25. Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171(11):1286–1291

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862

    Article  PubMed  Google Scholar 

  27. Hu FB, Willett WC, Colditz GA, Ascherio A, Speizer FE, Rosner B, Hennekens CH, Stampfer MJ (1999) Prospective study of snoring and risk of hypertension in women. Am J Epidemiol 150(8):806–816

    Article  CAS  PubMed  Google Scholar 

  28. Phillips M, Greenberg J, Cataneo RN (2000) Effect of age on the profile of alkanes in normal human breath. Free Radic Res 33(1):57–63

    Article  CAS  PubMed  Google Scholar 

  29. Lechner M, Moser B, Niederseer D, Karlseder A, Holzknecht B, Fuchs M, Colvin S, Tilg H, Rieder J (2006) Gender and age specific differences in exhaled isoprene levels. Respir Physiol Neurobiol 154(3):478–483

    Article  CAS  PubMed  Google Scholar 

  30. Cheng ZJ, Warwick G, Yates DH, Thomas PS (2009) An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J Breath Res 3(3):036003

    Article  CAS  PubMed  Google Scholar 

  31. Dalton P, Gelperin A, Preti G (2004) Volatile metabolic monitoring of glycemic status in diabetes using electronic olfaction. Diabetes Technol Ther 6(4):534–544

    Article  CAS  PubMed  Google Scholar 

  32. Timms C, Thomas PS, Yates DH (2012) Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res 6(1):016003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a Hungarian Scientific Research Fund (OTKA 68808) and Hungarian Respiratory Society research grant (to Andras Bikov). The authors are grateful to Monika Banlaky for assistance in sample collection and to Anna Grove for English corrections.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Bikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunos, L., Bikov, A., Lazar, Z. et al. Evening and morning exhaled volatile compound patterns are different in obstructive sleep apnoea assessed with electronic nose. Sleep Breath 19, 247–253 (2015). https://doi.org/10.1007/s11325-014-1003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1003-z

Keywords

Navigation