Skip to main content
Log in

A Trifunctional Theranostic Ligand Targeting Fibroblast Activation Protein-α (FAPα)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Fibroblast activation protein-α (FAPα) is uniquely expressed in activated fibroblasts, including cancer-associated fibroblasts that populate tumor stroma and contribute to proliferation and immunosuppression. Radiolabeled FAPα inhibitors enable imaging of multiple human cancers, but time-dependent clearance from tumors currently limits their utility as FAPα-targeted radiotherapeutics. We sought to increase the area under the curve (AUC) by constructing a trifunctional ligand that binds FAPα with high affinity and also binds albumin and theranostic radiometals.

Procedures

RPS-309 comprised a FAPα-targeting moiety, an albumin-binding group, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Inhibition of recombinant human FAPα (rhFAPα) was determined by colorimetric assay. Affinity for human serum albumin (HSA) was determined by high-performance affinity chromatography. The tissue distribution of [68Ga]Ga-RPS-309 in SW872 tumor xenograft-bearing mice was imaged by microPET/CT and quantified by biodistribution studies performed from 30 min to 3 h post injection (p.i.). The biodistribution of [177Lu]Lu-RPS-309 was determined at 4, 24, and 96 h p.i.

Results

RPS-309 inhibits rhFAPα with IC50 = 7.3 ± 1.4 nM. [68Ga]Ga-RPS-309 is taken up specifically by FAPα-expressing cells and binds HSA with Kd = 4.6 ± 0.1 μM. Uptake of the radiolabeled ligand in tumors was evident from 30 min p.i. (> 5 %ID/g) and was significantly reduced by co-injection of RPS-309. Specific skeletal uptake was also observed. Activity in tumors was constant through 4 h p.i., but cleared significantly by 24 h. The AUC in this period was 127 (%ID/g) × h.

Conclusions

RPS-309 is a high-affinity FAPα inhibitor with prolonged plasma residence. Introduction of the albumin-binding group did not compromise FAPα binding. Although initial tumor uptake was high and FAPα-specific, RPS-309 also progressively cleared from tumors. Nevertheless, RPS-309 incorporates multiple sites in which structural diversity can be introduced, and therefore serves as a platform for future structure-activity relationship studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Liu T, Zhou L, Li D, Andl T, Zhang Y (2019) Cancer-Associated Fibroblast Build and Secure the Tumor Microenvironment. Front Cell Dev Biol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R (2019) Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J ImmunoTherapy. Cancer 7:19

    Google Scholar 

  3. Broekgaarden M, Anbil S, Bulin AL et al (2019) Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials 222:119421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of Antitumor Activity Immunity by Stromal Cells Expressing Fibroblast Activation Protein-α. Science 330:827–830

    Article  CAS  PubMed  Google Scholar 

  5. Dvořáková P, Bušek P, Knedlik T et al (2017) Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J Med Chem 60:8385–8393

    Article  PubMed  CAS  Google Scholar 

  6. Acharya PS, Zukas A, Chandan V, Katzenstein ALA, Puré E (2006) Fibroblast activation protein: a serine protease expressed at the remodeling surface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360

    Article  CAS  PubMed  Google Scholar 

  7. Croft AP, Campos J, Jansen K et al (2019) Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570:246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laverman P, van der Geest T, Terry SYA et al (2015) Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti-Fibroblast Activation Protein Antibody Correlates with Severity of Arthritis. J Nucl Med 56:778–783

    Article  CAS  PubMed  Google Scholar 

  9. Levy MT, McCaughan GW, Marinos G, Gorrell MD (2002) Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver 22:93–101

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598

    Article  CAS  PubMed  Google Scholar 

  11. Tillmanns J, Hoffmann D, Habbaba Y et al (2015) Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 87:194–203

    Article  CAS  PubMed  Google Scholar 

  12. Park JE, Lenter MC, Zimmerman RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512

    Article  CAS  PubMed  Google Scholar 

  13. Henry LR, Lee H-O, Lee JS et al (2007) Clinical Implications of Fibroblast Activation Protein in Patients with Colon Cancer. Clin Cancer Res 13:1736–1741

    Article  CAS  PubMed  Google Scholar 

  14. Cohen SJ, Alpaugh RK, Palazzo I et al (2008) Fibroblast Activation Protein and Its Relationship to Clinical Outcome in Pancreatic Adenocarcinoma. Pancreas 37:154–158

    Article  CAS  PubMed  Google Scholar 

  15. Puré E, Blomberg R (2018) Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37:4343–4357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kratochwil C, Flechsig P, Lindner T et al (2019) 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 60:801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giesel FL, Kratochwil C, Lindner T et al (2019) 68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med 60:386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindner T, Loktev A, Altmann A et al (2018) Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med 59:1415–1422

    Article  CAS  PubMed  Google Scholar 

  19. Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R (2013) DOTA Conjugate With an Albumin-Binding Entity Enables the First Folic Acid-Targeted 177Lu-radionuclide Tumor Therapy in Mice. J Nucl Med 54:124–131

    Article  PubMed  CAS  Google Scholar 

  20. Farkas R, Siwowska K, Ametamey SM, Schibli R, van der Muelen NP, Müller C (2016) (64)Cu- and (68)Ga-Based PET Imaging of Folate Receptor-Positive Tumors: Development and Evaluation of an Albumin-Binding NODAGA-Folate. Mol Pharm 13:1979–1987

    Article  CAS  PubMed  Google Scholar 

  21. Kelly JM, Amor-Coarasa A, Nikolopoulou A et al (2017) Dual-Target Binding Ligands with Modulated Pharmacokinetics for Endoradiotherapy of Prostate Cancer. J Nucl Med 58:1442–1449

    Article  CAS  PubMed  Google Scholar 

  22. Kelly J, Amor-Coarasa A, Ponnala S et al (2018) Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur J Nucl Med Mol Imaging 45:1841–1851

    Article  CAS  PubMed  Google Scholar 

  23. Kelly JM, Amor-Coarasa A, Ponnala S et al (2019) Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J Nucl Med 60:656–663

    Article  CAS  PubMed  Google Scholar 

  24. Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U (2019) Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Loktev A, Lindner T, Mier W et al (2018) A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 59:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loktev A, Lindner T, Burger EM et al (2019) Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J Nucl Med 60:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Busek P, Mateu R, Zubal M, Kotackova L, Sedo A (2018) Targeting Fibroblast Activation in Cancer - Prospects and Caveats. Front Biosci 23:1933–1968

    Article  CAS  Google Scholar 

  28. Tsai TY, Yeh TK, Chen X et al (2010) Substituted 4-Carboxymethylpyroglutamic Acid Diamides as Potent and Selective Inhibitors of Fibroblast Activation Protein. J Med Chem 53:6572–6583

    Article  CAS  PubMed  Google Scholar 

  29. Ryabtsova O, Jansen K, Goethem SV et al (2012) Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity. Bioorg Med Chem Lett 22:3412–3417

    Article  CAS  PubMed  Google Scholar 

  30. Poplawski SE, Lai JH, Li Y et al (2013) Identification of Selective and Potent Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase. J Med Chem 56:3467–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jansen K, Heirbaut L, Cheng JD et al (2013) Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med Chem Lett 4:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansen K, Heirbaut L, Verkerk R et al (2014) Extended Structure-Activity Relationship and Pharmacokinetic Investigation of (4-Quinolinoyl)glycyl-2-cyanopyrrolidine Inhibitors of Fibroblast Activation Protein (FAP). J Med Chem 57:3053–3074

    Article  CAS  PubMed  Google Scholar 

  33. Watabe T, Liu Y, Kaneda-Nakashima K et al (2020) Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: 64Cu- and 225Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. J Nucl Med 61:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuo H-T, Merkens H, Zhang Z et al (2018) Enhancing Treatment Efficacy of 177Lu-PSMA-617 with the Conjugation of an Albumin-Binding Motif: Preclinical Dosimetry and Endoradiotherapy Studies. Mol Pharm 15:5183–5191

    Article  CAS  PubMed  Google Scholar 

  35. Benešová M, Umbricht CA, Schibli R, Müller C (2018) Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol Pharm 15:934–946

    Article  PubMed  CAS  Google Scholar 

  36. Umbricht CA, Benešová M, Schibli R, Müller C (2018) Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Mol Pharm 15:2297–2306

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Jacobson O, Tian R et al (2018) Radioligand Therapy of Prostate Cancer with a Long-Lasting Prostate-Specific Membrane Antigen Targeting Agent 90Y-DOTA-EB-MCG. Bioconjug Chem 29:2309–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kramer V, Fernández R, Lehnert W et al (2020) Biodistribution and dosimetry of a single dose of albumin-binding ligand [177Lu]Lu-PSMA-ALB-56 in patients with mCRPC. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-05022-3

  39. Zang J, Fan X, Wang H et al (2019) First-in-human study of 177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 46:148–158

    Article  CAS  PubMed  Google Scholar 

  40. Gamache RF, Zettlitz KA, Tsai W-TK, Collins J, Wu AM, Murphy JM (2020) Tri-functional platform for construction of modular antibody fragments for in vivo18F-PET or NIRF molecular imaging. Chem Sci 11:1832–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plescia J, Cesco SD, Patrascu MB et al (2019) Integrated Synthetic, Biophysical, and Computational Investigations of Covalent Inhibitors of Prolyl Oligopeptidase and Fibroblast Activation Protein α. J Med Chem 62:7874–7884

    Article  CAS  PubMed  Google Scholar 

  42. Fischer E, Chaitanya K, Wüest T et al (2012) Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies. Clin Cancer Res 18:6208–6218

    Article  CAS  PubMed  Google Scholar 

  43. Kong F, Pang X, Zhao J et al (2019) Hydrolytic Metabolism of Cyanopyrrolidine DPP-4 Inhibitors Mediated by Dipeptidyl Peptidases. Drug Metab Dispos 47:238–248

    Article  CAS  PubMed  Google Scholar 

  44. van der Geest T, Roeleveld DM, Walgreen B et al (2018) Imaging fibroblast activation protein to monitor therapeutic effects of neutralizing interleukin-22 in collagen-induced arthritis. Rheumatology 57:737–747

    Article  PubMed  CAS  Google Scholar 

  45. Muliaditan T, Caron J, Okesola M et al (2018) Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun 9:2951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Egger C, Cannet C, Gérard C et al (2017) Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol 809:64–72

    Article  CAS  PubMed  Google Scholar 

  47. Fu X, Khalil H, Kanisicak O et al (2018) Specialized Fibroblast Differentiated States Underlie Scar Formation in the Infarcted Mouse Heart. J Clin Invest 128:2127–2143

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML (2017) Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends Pharmacol Sci 38:448–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Terry SYA, Koenders MI, Franssen GM et al (2016) Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin αvβ3. J Nucl Med 57:467–472

    Article  CAS  PubMed  Google Scholar 

  50. Varasteh Z, Mohanta S, Robu S et al (2019) Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a 68Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. J Nucl Med 60:1743–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Dr. Uwe Haberkorn for providing the HT-1080-FAP and HT-1080 cells and to acknowledge Dr. J. David Warren for assistance with compound purification and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Babich.

Ethics declarations

Conflict of Interest

James M. Kelly, Shashikanth Ponnala, and John W. Babich hold equity in Noria Therapeutics, Inc, which has licensed intellectual property rights related to compounds described in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, J.M., Jeitner, T.M., Ponnala, S. et al. A Trifunctional Theranostic Ligand Targeting Fibroblast Activation Protein-α (FAPα). Mol Imaging Biol 23, 686–696 (2021). https://doi.org/10.1007/s11307-021-01593-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01593-1

Key words

Navigation