Skip to main content

Advertisement

Log in

MR Spectroscopy in Neurodegenerative Disease

  • Review Article
  • Special Issue: Molecular Imaging in the Evaluation of Neurodegenerative Diseases
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Unlike traditional, tracer-based methods of molecular imaging, magnetic resonance spectroscopy (MRS) is based on the behavior of specific nuclei within a magnetic field and the general principle that the resonant frequency depends on the nucleus’ immediate chemical environment. Most clinical MRS research has concentrated on the metabolites visible with proton spectroscopy and measured in specified tissue volumes in the brain. This methodology has been applied in various neurodegenerative disorders, most frequently utilizing measures of N-acetylaspartate as a neuronal marker. At short echo times, additional compounds can be quantified, including myo-inositol, a putative marker for neuroglia, the excitatory neurotransmitter glutamate and its metabolic counterpart glutamine, and the inhibitory neurotransmitter gamma-aminobutyric acid. 31P-MRS can be used to study high-energy phosphate metabolites, providing an in vivo assessment of tissue bioenergetic status. This review discusses the application of these techniques to patients with neurodegenerative disorders, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clark JF, Doepke A, Filosa JA, et al. (2006) N-acetylaspartate as a reservoir for glutamate. Med Hypotheses 67:506–512

    Article  PubMed  CAS  Google Scholar 

  2. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    PubMed  CAS  Google Scholar 

  3. Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterisation of plaques in multiple sclerosis. Neurology 41:1251–1256

    PubMed  CAS  Google Scholar 

  4. Chong WK, Sweeney B, Wilkinson ID, et al. (1993) Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic and MR imaging findings. Radiology 188:119–124

    PubMed  CAS  Google Scholar 

  5. Shino A, Matsuda M, Morikawa S, Inubushi T, Akiguchi I, Handa J (1993) Proton magnetic resonance spectroscopy with dementia. Surg Neurol 39:143–147

    Article  Google Scholar 

  6. Gideon P, Henriksen O, Sperling B, et al. (1992) Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke 23:1566–1572

    PubMed  CAS  Google Scholar 

  7. Cwik V, Hanstock C, Allen PS, Martin WRW (1998) Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 50:72–77

    PubMed  CAS  Google Scholar 

  8. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  PubMed  CAS  Google Scholar 

  9. Vion-Dury J, Meyerhoff DJ, Cozzone PJ, Weiner MW (1994) What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 241:354–371

    Article  PubMed  CAS  Google Scholar 

  10. Allen PS, Thompson RB, Wilman AH (1997) Metabolite-specific NMR spectroscopy in vivo. NMR Biomed 10:435–444

    Article  PubMed  CAS  Google Scholar 

  11. Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HBW (1993) In vivo quantification of brain metabolites by 1H MRS using water as an internal standard. Magn Reson Imaging 11:107–108

    Article  PubMed  CAS  Google Scholar 

  12. Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    PubMed  CAS  Google Scholar 

  13. Davie C (1998) The role of spectroscopy in parkinsonism. Mov Disord 13:2–4

    Article  PubMed  CAS  Google Scholar 

  14. Clarke CE, Lowry M (2001) Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol 8:573–577

    Article  PubMed  CAS  Google Scholar 

  15. Holshauser BA, Komu M, Moller HE, et al. (1995) Localised proton NMR spectroscopy in the striatum of patients with idiopathic Parkinson’s disease: a multicenter pilot study. Magn Reson Med 33:589–594

    Article  Google Scholar 

  16. Davie CA, Wenning GK, Barker GJ, et al. (1995) Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 37:204–210

    Article  PubMed  CAS  Google Scholar 

  17. Cruz CJ, Aminoff MJ, Meyerhoff DJ, Graham SH, Weiner MW (1997) Proton MR spectroscopic imaging of the striatum in Parkinson’s disease. Magn Reson Imaging 15:619–624

    Article  PubMed  CAS  Google Scholar 

  18. Tedeschi G, Litvan I, Bonavita S, et al. (1997) Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease and corticobasal degeneration. Brain 120:1541–1552

    Article  PubMed  Google Scholar 

  19. Clarke CE, Lowry M, Horsman A (1997) Unchanged basal ganglia N-acetylaspartate and glutamate in idiopathic Parkinson’s disease measured by proton magnetic resonance spectroscopy. Mov Disord 12:297–301

    Article  PubMed  CAS  Google Scholar 

  20. Ellis CM, Lemmens G, Williams SCR, et al. (1997) Changes in putamen N-acetylaspartate and choline ratios in untreated and levodopa treated Parkinson’s disease: a proton magnetic resonance spectroscopy study. Neurology 49:438–444

    PubMed  CAS  Google Scholar 

  21. Clarke CE, Lowry M (2000) Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease and multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur J Neurol 7:661–665

    Article  PubMed  CAS  Google Scholar 

  22. O’Neill J, Schuff N, Marks WJ, Feiwell R, Aminoff MJ, Weiner MW (2002) Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord 17:917–927

    Article  PubMed  Google Scholar 

  23. Oz G, Terpstra M, Tkac I, et al. (2006) Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med 55:296–301

    Article  PubMed  CAS  Google Scholar 

  24. Lucetti C, del Dotto P, Gambaccini G, et al. (2001) Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex and basal ganglia in de novo Parkinson’s disease patients. Neurol Sci 22:69–70

    Article  PubMed  CAS  Google Scholar 

  25. Hu MTM, Taylor-Robinson SD, Chaudhuri KR, et al. (1999) Evidence for cortical dysfunction in clinically non-demented patients with Parkinson’s disease: a proton MR spectroscopy study. J Neurol Neurosurg Psychiatry 67:20–26

    Article  PubMed  CAS  Google Scholar 

  26. Camicioli RM, Korzan JR, Foster SL, et al. (2004) Posterior cingulate metabolic changes occur in Parkinson’s disease patients without dementia. Neurosci Lett 354:177–180

    Article  PubMed  CAS  Google Scholar 

  27. Federico F, Simone IL, Lucivero V, et al. (1999) Usefulness of proton magnetic resonance spectroscopy in differentiating parkinsonian syndromes. Ital J Neurol Sci 20:223–229

    Article  PubMed  CAS  Google Scholar 

  28. Watanabe H, Fukatsu H, Katsun M, et al. (2004) Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry 75:103–109

    PubMed  CAS  Google Scholar 

  29. Axelson D, Bakken IJ, Gribbestad IS, Ehrnholm B, Nilsen G, Aasly J (2002) Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 16:13–20

    Article  PubMed  Google Scholar 

  30. Tofts PS, Wray S (1988) A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR Biomed 1:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Pioro EP, Antel JP, Cashman NR, Arnold DL (1994) Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 44:1933–1938

    PubMed  CAS  Google Scholar 

  32. Kalra S, Cashman NR, Caramanos Z, Genge A, Arnold DL (2003) Gabapentin therapy for amyotrophic lateral sclerosis: lack of improvement in neuronal integrity shown by MR spectroscopy. AJNR Am J Neuroradiol 24:476–480

    PubMed  Google Scholar 

  33. Kalra S, Genge A, Arnold D (2003) A prospective, randomized, placebo controlled evaluation of corticoneuronal response to intrathecal BDNF therapy in ALS using magnetic resonance spectroscopy: feasibility and results. Amyotroph Lateral Scler Other Motor Neuron Disord 4:22–26

    Article  PubMed  CAS  Google Scholar 

  34. Abe K, Takanashi M, Watanabe Y (2001) Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis. Neuroradiology 43:537–541

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann P, Pullman SL, Shungu DC, et al. (2004) Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology 62:1753–1757

    PubMed  CAS  Google Scholar 

  36. Cwik VA, Hanstock CC, Allen PS, Martin WRW (1998) Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 50:72–77

    PubMed  CAS  Google Scholar 

  37. Suhy J, Miller RG, Rule R, et al. (2002) Early detection and longitudinal changes in amyotrophic lateral sclerosis by 1H-MRSI. Neurology 58:773–779

    PubMed  CAS  Google Scholar 

  38. Kalra S, Hanstock CC, Martin WRW, et al. (2006) Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 63:1144–1148

    Article  PubMed  Google Scholar 

  39. Kalra S, Cashman NR, Genge A, Arnold DL (1998) Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 9:1757–1761

    Article  PubMed  CAS  Google Scholar 

  40. Schuff N, Capizzano AA, Du AT, et al. (2002) Selective reduction of N-acetyl aspartate in medial temporal and parietal lobes in AD. Neurology 58:928–935

    PubMed  CAS  Google Scholar 

  41. Jessen F, Block W, Traber F, et al. (2000) Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology 55:684–688

    PubMed  CAS  Google Scholar 

  42. Frederick BD, Lyoo IK, Satlin A, et al. (2004) In vivo proton magnetic resonance spectroscopy of the temporal lobe in Alzheimer’s disease. Prog Neuropsychopharm Biol Psychiatry 28:1313–1322

    Article  CAS  Google Scholar 

  43. Kantarci K, Petersen RC, Boeve BF, et al. (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398

    PubMed  CAS  Google Scholar 

  44. Huang W, Alexander GE, Chang L, et al. (2001) Brain metabolite concentration and dementia severity in Alzheimer’s disease: a 1H MRS study. Neurology 57:626–632

    PubMed  CAS  Google Scholar 

  45. Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta 1004:169–179

    PubMed  CAS  Google Scholar 

  46. Ross AJ, Sachdev PS, Wen W, Brodaty H (2006) Longitudinal changes during aging using proton magnetic resonance spectroscopy. J Gerontol A Biol Sci Med Sci 61A:291–298

    CAS  Google Scholar 

  47. Klunk WE, Xu C, Panchalingham K, McClure RJ, Pettegrew JW (1996) Quantitative 1H and 31P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiol Aging 17:349–357

    Article  PubMed  CAS  Google Scholar 

  48. Catani M, Cherubini R, Howard R, et al. (2001) 1H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport 12:2315–2317

    Article  PubMed  CAS  Google Scholar 

  49. Kantarci K, Jack CR Jr, Xu YC, et al. (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease. Neurology 55:210–217

    PubMed  CAS  Google Scholar 

  50. Chantal S, Braun CMJ, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003:26–35

    Article  PubMed  CAS  Google Scholar 

  51. Valenzuela MJ, Sachdev P (2001) Magnetic resonance spectroscopy in Alzheimer’s disease. Neurology 56:592–598

    PubMed  CAS  Google Scholar 

  52. Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP (2005) Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 384:23–28

    Article  PubMed  CAS  Google Scholar 

  53. Modrego PJ, Fayed N, Pina MA (2005) Conversion from mild cognitive impairment to probably Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 162:667–675

    Article  PubMed  Google Scholar 

  54. Falini A, Bozzali M, Magnani G, et al. (2005) A whole brain MR spectroscopy study from patients with Alzheimer’s disease and mild cognitive impairment. Neuroimage 26:1159–1163

    Article  PubMed  CAS  Google Scholar 

  55. Marjanska M, Curran GL, Wengenack TM, et al. (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102:11906–11910

    Article  PubMed  CAS  Google Scholar 

  56. Dedeoglu A, Choi J-K, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65

    Article  PubMed  CAS  Google Scholar 

  57. von Kienlin M, Kunnecke B, Metzger F, et al. (2004) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18:32–39

    Article  CAS  Google Scholar 

  58. DiMauro S (1993) Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 43:2170–2171

    PubMed  CAS  Google Scholar 

  59. Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    Article  PubMed  CAS  Google Scholar 

  60. Matthews PM, Allaire C, Shoubridge EA, Karpati G, Carpenter S, Arnold DL (1991) In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 41:114–120

    PubMed  CAS  Google Scholar 

  61. Penn AMW, Roberts T, Hodder J, Allen PS, Zhu G, Martin WRW (1995) Generalized mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 45:2097–2099

    PubMed  CAS  Google Scholar 

  62. Rango M, Bonifati C, Bresolin N (2006) Parkinson’s disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 26:283–290

    Article  PubMed  CAS  Google Scholar 

  63. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  PubMed  CAS  Google Scholar 

  64. Barbiroli B, Martinelli P, Patuelli A, et al. (1999) Phosphorus magnetic resonance spectroscopy in multiple system atrophy and Parkinson’s disease. Mov Disord 14:430–435

    Article  PubMed  CAS  Google Scholar 

  65. Hu MTM, Taylor-Robinson SD, Chaudhuri KR, et al. (2000) Cortical dysfunction in non-demented Parkinson’s disease patients. A combined 31P-MRS and 18FDG-PET study. Brain 123:340–352

    Article  PubMed  Google Scholar 

  66. Hoang TQ, Bluml S, Dubowitz DJ, et al. (1998) Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 50:1033–1040

    PubMed  CAS  Google Scholar 

  67. Forlenza OV, Wacker P, Nunes PV, et al. (2005) Reduced phospholipid breakdown in Alzheimer’s brains: a 31P spectroscopy study. Psychopharmacology (Berl) 180:359–365

    Article  CAS  Google Scholar 

  68. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695

    PubMed  CAS  Google Scholar 

  69. Morris P, Bachelard H (2003) Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed 16:303–312

    Article  PubMed  CAS  Google Scholar 

  70. de Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16:339–357

    Article  PubMed  CAS  Google Scholar 

  71. Gruetter R, Adriany G, Choi I-Y, Henry P-G, Lei H, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338

    Article  PubMed  CAS  Google Scholar 

  72. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26:865–877

    Article  PubMed  CAS  Google Scholar 

  73. Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease—an in vivo 13C magnetic resonance spectroscopy study. MAGMA 16:29–42

    Article  PubMed  CAS  Google Scholar 

  74. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Wayne Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, W.R.W. MR Spectroscopy in Neurodegenerative Disease. Mol Imaging Biol 9, 196–203 (2007). https://doi.org/10.1007/s11307-007-0087-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0087-2

Key words

Navigation