Skip to main content

Advertisement

Log in

Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity.

Objectives

The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function.

Methods

A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings.

Results

A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels.

Conclusion

Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CF:

Cystic Fibrosis

CFTR:

Cystic Fibrosis Transmembrane Conductance Regulator

ROS:

Reactive Oxygen Species

VOC:

Volatile Organic Compounds

DBS:

Dried Blood Spots

GC–MS:

Gas Chromatography-Mass Spectrometry

CIL LC–MS:

Chemical isotope labeling liquid chromatography-mass spectrometry

References

  • Al-Qahtani, W., Abdel Jabar, M., Masoos, A., Jacob, M., Nizami, I., Dasouki, M., & Abdel Rahman, A. M. (2020). Dried blood spot-based metabolomic profiling in adults with cystic fibrosis. Journal of Proteome Research 19, 2346–2357.

    CAS  PubMed  Google Scholar 

  • Benabdelkamel, H., Alamri, H., Okla, M., Masood, A., Abdel Jabar, M., Alanazi, I. O., et al. (2020). Serum-based proteomics profiling in adult patients with cystic fibrosis. International Journal of Molecular Science, 21, 7415.

    CAS  Google Scholar 

  • Bolourian, A., & Mojtahedi, Z. (2018). Streptomyces, shared microbiome member of soil and gut, as 'old friends' against colon cancer. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiy120.

    Article  PubMed  Google Scholar 

  • Boto-Ordonez, M., Urpi-Sarda, M., Queipo-Ortuno, M. I., Tulipani, S., Tinahones, F. J., & Andres-Lacueva, C. (2014). High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food Function, 5, 1932–1938.

    CAS  PubMed  Google Scholar 

  • Broderick, K. E., Singh, V., Zhuang, S., Kambo, A., Chen, J. C., Sharma, V. S., et al. (2005). Nitric oxide scavenging by the cobalamin precursor cobinamide. Journal of Biological Chemistry, 280, 8678–8685.

    CAS  PubMed  Google Scholar 

  • Callery, P. S., & Geelhaar, L. A. (1984). Biosynthesis of 5-aminopentanoic acid and 2-piperidone from cadaverine and 1-piperideine in mouse. Journal of Neurochemistry, 43, 1631–1634.

    CAS  PubMed  Google Scholar 

  • Callery, P. S., & Geelhaar, L. A. (1985). 1-Piperideine as an in vivo precursor of the gamma-aminobutyric acid homologue 5-aminopentanoic acid. Journal of Neurochemistry, 45, 946–948.

    CAS  PubMed  Google Scholar 

  • Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V., Cho, R. J., et al. (2005). A network-based analysis of systemic inflammation in humans. Nature, 437, 1032–1037.

    CAS  PubMed  Google Scholar 

  • Castellani, C., & Assael, B. M. (2017). Cystic fibrosis: A clinical view. Cellular and Molecular Life Sciences, 74, 129–140.

    CAS  PubMed  Google Scholar 

  • Castellani, C., Cuppens, H., Macek, M., Jr., Cassiman, J. J., Kerem, E., Durie, P., et al. (2008). Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. Journal of Cystic Fibrosis, 7, 179–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D., Su, X., Wang, N., Li, Y., Yin, H., Li, L., & Li, L. (2017). Chemical isotope labeling LC-MS for monitoring disease progression and treatment in animal models: plasma metabolomics study of osteoarthritis rat model. Scientific Reports, 7, 40543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahabiyeh, L. A. Malkawi, A. K. Wang, X. Colak, D. Mujamammi, A. H. Sabi, et al. (2020). Dexamethasone-induced perturbations in tissue metabolomics revealed by chemical isotope labeling LC-MS analysis. Metabolites, 10, 42

    CAS  PubMed Central  Google Scholar 

  • Davis, P. B., Drumm, M., & Konstan, M. W. (1996). Cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 154, 1229–1256.

    CAS  PubMed  Google Scholar 

  • de Boeck, K., Zolin, A., Cuppens, H., Olesen, H. V., & Viviani, L. (2014). The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. Journal of Cystic Fibrosis, 13, 403–409.

    PubMed  Google Scholar 

  • Eisenhofer, G., Aneman, A., Hooper, D., Rundqvist, B., & Friberg, P. (1996). Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. Journal of Neurochemistry, 66, 1565–1573.

    PubMed  Google Scholar 

  • Esther, C. R. JR. Turkovic, L. Rosenow, T. Muhlebach, M. S. Boucher, R. C. Ranganathan, S. & Stick, S. M. (2016). Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis. European Respiratory Journal, 48, 1612–1621.

    CAS  PubMed  Google Scholar 

  • Forester, S. C., & Waterhouse, A. L. (2008). Identification of Cabernet Sauvignon anthocyanin gut microflora metabolites. Journal of Agriculture and Food Chemistry, 56, 9299–9304.

    CAS  Google Scholar 

  • Gadsby, D. C., Vergani, P., & Csanady, L. (2006). The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature, 440, 477–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galant, S. P., Norton, L., Herbst, J., & Wood, C. (1981). Impaired beta adrenergic receptor binding and function in cystic fibrosis neutrophils. Journal of Clinical Investigation, 68, 253–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grasemann, H., Al-Saleh, S., Scott, J. A., Shehnaz, D., Mehl, A., Amin, R., et al. (2011). Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 183, 1363–1368.

    CAS  PubMed  Google Scholar 

  • Grasemann, H., & Pencharz, P. B. (2013). Arginine metabolism in patients with cystic fibrosis. Journal of Pediatrics, 163, 317–319.

    CAS  PubMed  Google Scholar 

  • Grasemann, H., Schwiertz, R., Grasemann, C., Vester, U., Racke, K., & Ratjen, F. (2006). Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respiratory Research, 7, 87.

    PubMed  PubMed Central  Google Scholar 

  • Guo, K., & Li, L. (2009). Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Analytical Chemistry, 81, 3919–3932.

    CAS  PubMed  Google Scholar 

  • Huan, T., & Li, L. (2015). Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Analytical Chemistry, 87, 1306–1313.

    CAS  PubMed  Google Scholar 

  • Huan, T., Wu, Y., Tang, C., Lin, G., & Li, L. (2015). DnsID in MyCompoundID for rapid identification of dansylated amine- and phenol-containing metabolites in LC-MS-based metabolomics. Analytical Chemistry, 87, 9838–9845.

    CAS  PubMed  Google Scholar 

  • Jacob, M., Gu, X., Luo, X., Al-Mousa, H., Arnaout, R., Al-Saud, B., et al. (2019). Metabolomics distinguishes DOCK8 deficiency from atopic dermatitis: towards a biomarker discovery. Metabolites, 9, 274.

    CAS  PubMed Central  Google Scholar 

  • Kariya, C., Leitner, H., Min, E., van Heeckeren, C., van Heeckeren, A., & Day, B. J. (2007). A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L1590–L1597.

    CAS  PubMed  Google Scholar 

  • Laguna, T. A., Reilly, C. S., Williams, C. B., Welchlin, C., & Wendt, C. H. (2015). Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatric Pulmonology, 50, 869–877.

    PubMed  PubMed Central  Google Scholar 

  • Li, C., Ramjeesingh, M., Wang, W., Garami, E., Hewryk, M., Lee, D., et al. (1996). ATPase activity of the cystic fibrosis transmembrane conductance regulator. Journal of Biological Chemistry, 271, 28463–28468.

    CAS  PubMed  Google Scholar 

  • Li, L., Li, R., Zhou, J., Zuniga, A., Stanislaus, A. E., Wu, Y., et al. (2013). MyCompoundID: using an evidence-based metabolome library for metabolite identification. Analytical Chemistry, 85, 3401–3408.

    CAS  PubMed  Google Scholar 

  • Long, F., Liu, H., Hahn, C., Sumazin, P., Zhang, M. Q., & Zilberstein, A. (2004). Genome-wide prediction and analysis of function-specific transcription factor binding sites. Silico Biology, 4, 395–410.

    CAS  Google Scholar 

  • Maiuri, L., Raia, V., & Kroemer, G. (2017). Strategies for the etiological therapy of cystic fibrosis. Cell Death and Differentiation, 24, 1825–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makni, M., Chtourou, Y., Barkallah, M., & Fetoui, H. (2012). Protective effect of vanillin against carbon tetrachloride (CCl(4))-induced oxidative brain injury in rats. Toxicology and Industrial Health, 28, 655–662.

    CAS  PubMed  Google Scholar 

  • Marson, F. A. L., Bertuzzo, C. S., & Ribeiro, J. D. (2016). Classification of CFTR mutation classes. Lancet Respiratory Medicine, 4, e37–e38.

    PubMed  Google Scholar 

  • Moran, A., Milla, C., Ducret, R., & Nair, K. S. (2001). Protein metabolism in clinically stable adult cystic fibrosis patients with abnormal glucose tolerance. Diabetes, 50, 1336–1343.

    CAS  PubMed  Google Scholar 

  • Muhlebach, M. S., Sha, W., Macintosh, B., Kelley, T. J., & Muenzer, J. (2019). Metabonomics reveals altered metabolites related to inflammation and energy utilization at recovery of cystic fibrosis lung exacerbation. Metabolism Open, 3, 100010.

    PubMed  PubMed Central  Google Scholar 

  • Ogawara, H. (2019). Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria. Molecules, 24.

    CAS  PubMed Central  Google Scholar 

  • Painter, R. G., Valentine, V. G., Lanson, N. A., Jr., Leidal, K., Zhang, Q., Lombard, G., et al. (2006). CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry, 45, 10260–10269.

    CAS  PubMed  Google Scholar 

  • Partington, M. W., & Ferguson, A. C. (1977). Serotonin metabolism in cystic fibrosis. Archives of Disease in Childhood, 52, 386–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan, G. J., Lamb, N. J., Tilley, R., Evans, T. W., & Gutteridge, J. M. (1997). Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. American Journal of Respiratory and Critical Care Medicine, 155, 479–484.

    CAS  PubMed  Google Scholar 

  • Ratjen, F., Bell, S. C., Rowe, S. M., Goss, C. H., Quittner, A. L., & Bush, A. (2015). Cystic fibrosis.Nature Review Disease Primers, 1, 15010.

    PubMed  Google Scholar 

  • Reyhani, A., Celik, Y., Karadag, H., Gunduz, O., Asil, T., & Sut, N. (2017). High asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in migraine patients. Neurology Science, 38, 1287–1291.

    Google Scholar 

  • Rogan, M. P., Stoltz, D. A., & Hornick, D. B. (2011). Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest, 139, 1480–1490.

    CAS  PubMed  Google Scholar 

  • Roth, J. R., Lawrence, J. G., & Bobik, T. A. (1996). Cobalamin (coenzyme B12): synthesis and biological significance. Annual Review of Microbiology, 50, 137–181.

    CAS  PubMed  Google Scholar 

  • Schneider, E., & Hunke, S. (1998). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiology Reviews, 22, 1–20.

    CAS  PubMed  Google Scholar 

  • Schwiebert, E. M., Kizer, N., Gruenert, D. C., & Stanton, B. A. (1992). GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells. Proceedings of the National Academy of Sciences USA, 89, 10623–10627.

    CAS  Google Scholar 

  • Shelton, A. N., Seth, E. C., Mok, K. C., Han, A. W., Jackson, S. N., Haft, D. R., & Taga, M. E. (2019). Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 13, 789–804.

    CAS  PubMed  Google Scholar 

  • Stefely, J. A., & Pagliarini, D. J. (2017). Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends in Biochemical Sciences, 42, 824–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, M. C., & van der Donk, W. A. (2016). The many roles of glutamate in metabolism. Journal of Industrial Microbiology and Biotechnology, 43, 419–430.

    CAS  PubMed  Google Scholar 

  • Wetmore, D. R., Joseloff, E., Pilewski, J., Lee, D. P., Lawton, K. A., Mitchell, M. W., et al. (2010). Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. Journal of Biological Chemistry, 285, 30516–30522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter-De, D. E., Groot, K. M., & Van Der Ent, C. K. (2005). Nitric oxide in cystic fibrosis. Journal of Cystic Fibrosis, 4(Suppl 2), 25–29.

    Google Scholar 

  • Wolak, J. E., Esther, C. R., Jr., & O’Connell, T. M. (2009). Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers, 14, 55–60.

    CAS  PubMed  Google Scholar 

  • Wu, Y., & Li, L. (2012). Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics. Analytical Chemistry, 84, 10723–10731.

    CAS  PubMed  Google Scholar 

  • Zardini Buzatto, A., Abdel Jabar, M., Nizami, I., Dasouki, M., Li, L., & Abdel Rahman, A. M. (2020). Lipidome alterations induced by cystic fibrosis, CFTR mutation, and lung function. Journal of Proteome Research. https://doi.org/10.1021/acs.jproteome.0c00556.

    Article  PubMed  Google Scholar 

  • Zhang, J., Cui, R., Feng, Y., Gao, W., Bi, J., Li, Z., & Liu, C. (2018). Serotonin exhibits accelerated bleomycin-induced pulmonary fibrosis through TPH1 knockout mouse experiments. Mediators of Inflammation, 2018, 7967868.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, R., Tseng, C. L., Huan, T., & Li, L. (2014). IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform. Analytical Chemistry, 86, 4675–4679.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Executive Director of the Research Centre, King Faisal Specialist Hospital and Research Centre, to Dr. Brian Meyer, Chairman of the Department of Genetics, for the funding supports, and to all the patients who contributed to this project. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research through the Research Group Project no. RGP-334. The work performed at the Li-node of the Metabolomics Innovation Centre (TMIC) of Canada was partially funded by Genome Canada and Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Contributions

AM analyzed the data and wrote the first draft of the manuscript. MJ compiled the figures and tables and contributed to drafting the manuscript. LL and XG conducted the metabolomics experiment, IN and MAJ recruited patients and provided their clinical data and samples. HB performed the proteomics analysis. MD critically revised the manuscript, and AMAR designed the study, supervised experiments, data analysis, and finalized the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anas M. Abdel Rahman.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest.

Informed consent

The authors declare that all the patients who participated in this study provided informed consent to use their biological material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, A., Jacob, M., Gu, X. et al. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 17, 4 (2021). https://doi.org/10.1007/s11306-020-01760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01760-5

Keywords

Navigation